Trait statrs::distribution::Univariate [−][src]
The Univariate trait is used to specify an interface for univariate
distributions e.g. distributions that have a closed form cumulative
distribution
function
Required methods
fn cdf(&self, x: K) -> K[src]
Returns the cumulative distribution function calculated
at x for a given distribution. May panic depending
on the implementor.
Examples
use statrs::distribution::{Univariate, Uniform}; let n = Uniform::new(0.0, 1.0).unwrap(); assert_eq!(0.5, n.cdf(0.5));
Implementors
impl Univariate<f64, f64> for Beta[src]
impl Univariate<f64, f64> for Beta[src]impl Univariate<f64, f64> for Cauchy[src]
impl Univariate<f64, f64> for Cauchy[src]impl Univariate<f64, f64> for Chi[src]
impl Univariate<f64, f64> for Chi[src]impl Univariate<f64, f64> for ChiSquared[src]
impl Univariate<f64, f64> for ChiSquared[src]impl Univariate<f64, f64> for Erlang[src]
impl Univariate<f64, f64> for Erlang[src]impl Univariate<f64, f64> for Exponential[src]
impl Univariate<f64, f64> for Exponential[src]impl Univariate<f64, f64> for FisherSnedecor[src]
impl Univariate<f64, f64> for FisherSnedecor[src]fn cdf(&self, x: f64) -> f64[src]
Calculates the cumulative distribution function for the fisher-snedecor
distribution
at x
Formula
I_((d1 * x) / (d1 * x + d2))(d1 / 2, d2 / 2)
where d1 is the first degree of freedom, d2 is
the second degree of freedom, and I is the regularized incomplete
beta function
impl Univariate<f64, f64> for Gamma[src]
impl Univariate<f64, f64> for Gamma[src]impl Univariate<f64, f64> for InverseGamma[src]
impl Univariate<f64, f64> for InverseGamma[src]impl Univariate<f64, f64> for LogNormal[src]
impl Univariate<f64, f64> for LogNormal[src]impl Univariate<f64, f64> for Normal[src]
impl Univariate<f64, f64> for Normal[src]impl Univariate<f64, f64> for Pareto[src]
impl Univariate<f64, f64> for Pareto[src]impl Univariate<f64, f64> for StudentsT[src]
impl Univariate<f64, f64> for StudentsT[src]fn cdf(&self, x: f64) -> f64[src]
Calculates the cumulative distribution function for the student’s
t-distribution
at x
Formula
if x < μ { (1 / 2) * I(t, v / 2, 1 / 2) } else { 1 - (1 / 2) * I(t, v / 2, 1 / 2) }
where t = v / (v + k^2), k = (x - μ) / σ, μ is the location,
σ is the scale, v is the freedom, and I is the regularized
incomplete
beta function
impl Univariate<f64, f64> for Triangular[src]
impl Univariate<f64, f64> for Triangular[src]impl Univariate<f64, f64> for Uniform[src]
impl Univariate<f64, f64> for Uniform[src]impl Univariate<f64, f64> for Weibull[src]
impl Univariate<f64, f64> for Weibull[src]impl Univariate<i64, f64> for DiscreteUniform[src]
impl Univariate<i64, f64> for DiscreteUniform[src]impl Univariate<u64, f64> for Bernoulli[src]
impl Univariate<u64, f64> for Bernoulli[src]impl Univariate<u64, f64> for Binomial[src]
impl Univariate<u64, f64> for Binomial[src]impl Univariate<u64, f64> for Categorical[src]
impl Univariate<u64, f64> for Categorical[src]impl Univariate<u64, f64> for Geometric[src]
impl Univariate<u64, f64> for Geometric[src]impl Univariate<u64, f64> for Hypergeometric[src]
impl Univariate<u64, f64> for Hypergeometric[src]fn cdf(&self, x: f64) -> f64[src]
Calculates the cumulative distribution function for the hypergeometric
distribution at x
Formula
1 - ((n choose k+1) * (N-n choose K-k-1)) / (N choose K) * 3_F_2(1, k+1-K, k+1-n; k+2, N+k+2-K-n; 1)
and p_F_q is the [generalized hypergeometric
function](https://en.wikipedia.
org/wiki/Generalized_hypergeometric_function)