Struct statrs::distribution::Normal [−][src]
pub struct Normal { /* fields omitted */ }
Implements the Normal distribution
Examples
use statrs::distribution::{Normal, Continuous}; use statrs::statistics::Mean; let n = Normal::new(0.0, 1.0).unwrap(); assert_eq!(n.mean(), 0.0); assert_eq!(n.pdf(1.0), 0.2419707245191433497978);
Implementations
impl Normal
[src]
impl Normal
[src]pub fn new(mean: f64, std_dev: f64) -> Result<Normal>
[src]
Constructs a new normal distribution with a mean of mean
and a standard deviation of std_dev
Errors
Returns an error if mean
or std_dev
are NaN
or if
std_dev <= 0.0
Examples
use statrs::distribution::Normal; let mut result = Normal::new(0.0, 1.0); assert!(result.is_ok()); result = Normal::new(0.0, 0.0); assert!(result.is_err());
Trait Implementations
impl CheckedInverseCDF<f64> for Normal
[src]
impl CheckedInverseCDF<f64> for Normal
[src]fn checked_inverse_cdf(&self, x: f64) -> Result<f64>
[src]
impl Continuous<f64, f64> for Normal
[src]
impl Continuous<f64, f64> for Normal
[src]fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the normal distribution
at x
Formula
ⓘ
(1 / sqrt(2σ^2 * π)) * e^(-(x - μ)^2 / 2σ^2)
where μ
is the mean and σ
is the standard deviation
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the normal
distribution
at x
Formula
ⓘ
ln((1 / sqrt(2σ^2 * π)) * e^(-(x - μ)^2 / 2σ^2))
where μ
is the mean and σ
is the standard deviation
impl Distribution<f64> for Normal
[src]
impl Distribution<f64> for Normal
[src]impl InverseCDF<f64> for Normal
[src]
impl InverseCDF<f64> for Normal
[src]fn inverse_cdf(&self, x: f64) -> f64
[src]
impl Univariate<f64, f64> for Normal
[src]
impl Univariate<f64, f64> for Normal
[src]