Struct statrs::distribution::Erlang [−][src]
pub struct Erlang { /* fields omitted */ }
Implements the Erlang distribution which is a special case of the Gamma distribution
Examples
use statrs::distribution::{Erlang, Continuous}; use statrs::statistics::Mean; use statrs::prec; let n = Erlang::new(3, 1.0).unwrap(); assert_eq!(n.mean(), 3.0); assert!(prec::almost_eq(n.pdf(2.0), 0.270670566473225383788, 1e-15));
Implementations
impl Erlang
[src]
impl Erlang
[src]pub fn new(shape: u64, rate: f64) -> Result<Erlang>
[src]
Constructs a new erlang distribution with a shape (k)
of shape
and a rate (λ) of rate
Errors
Returns an error if shape
or rate
are NaN
.
Also returns an error if shape == 0
or rate <= 0.0
Examples
use statrs::distribution::Erlang; let mut result = Erlang::new(3, 1.0); assert!(result.is_ok()); result = Erlang::new(0, 0.0); assert!(result.is_err());
pub fn shape(&self) -> u64
[src]
Returns the shape (k) of the erlang distribution
Examples
use statrs::distribution::Erlang; let n = Erlang::new(3, 1.0).unwrap(); assert_eq!(n.shape(), 3);
pub fn rate(&self) -> f64
[src]
Returns the rate (λ) of the erlang distribution
Examples
use statrs::distribution::Erlang; let n = Erlang::new(3, 1.0).unwrap(); assert_eq!(n.rate(), 1.0);
Trait Implementations
impl Continuous<f64, f64> for Erlang
[src]
impl Continuous<f64, f64> for Erlang
[src]fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the erlang distribution
at x
Remarks
Returns NAN
if any of shape
or rate
are INF
or if x
is INF
Formula
ⓘ
(λ^k / Γ(k)) * x^(k - 1) * e^(-λ * x)
where k
is the shape, λ
is the rate, and Γ
is the gamma function
fn ln_pdf(&self, x: f64) -> f64
[src]
impl Distribution<f64> for Erlang
[src]
impl Distribution<f64> for Erlang
[src]impl Univariate<f64, f64> for Erlang
[src]
impl Univariate<f64, f64> for Erlang
[src]