Struct statrs::distribution::Cauchy [−][src]
pub struct Cauchy { /* fields omitted */ }
Implements the Cauchy distribution, also known as the Lorentz distribution.
Examples
use statrs::distribution::{Cauchy, Continuous}; use statrs::statistics::Mode; let n = Cauchy::new(0.0, 1.0).unwrap(); assert_eq!(n.mode(), 0.0); assert_eq!(n.pdf(1.0), 0.1591549430918953357689);
Implementations
impl Cauchy
[src]
impl Cauchy
[src]pub fn new(location: f64, scale: f64) -> Result<Cauchy>
[src]
Constructs a new cauchy distribution with the given location and scale.
Errors
Returns an error if location or scale are NaN
or scale <= 0.0
Examples
use statrs::distribution::Cauchy; let mut result = Cauchy::new(0.0, 1.0); assert!(result.is_ok()); result = Cauchy::new(0.0, -1.0); assert!(result.is_err());
pub fn location(&self) -> f64
[src]
Returns the location of the cauchy distribution
Examples
use statrs::distribution::Cauchy; let n = Cauchy::new(0.0, 1.0).unwrap(); assert_eq!(n.location(), 0.0);
pub fn scale(&self) -> f64
[src]
Returns the scale of the cauchy distribution
Examples
use statrs::distribution::Cauchy; let n = Cauchy::new(0.0, 1.0).unwrap(); assert_eq!(n.scale(), 1.0);
Trait Implementations
impl Continuous<f64, f64> for Cauchy
[src]
impl Continuous<f64, f64> for Cauchy
[src]fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the cauchy
distribution at x
Formula
ⓘ
1 / (πγ * (1 + ((x - x_0) / γ)^2))
where x_0
is the location and γ
is the scale
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the cauchy
distribution at x
Formula
ⓘ
ln(1 / (πγ * (1 + ((x - x_0) / γ)^2)))
where x_0
is the location and γ
is the scale
impl Distribution<f64> for Cauchy
[src]
impl Distribution<f64> for Cauchy
[src]impl Univariate<f64, f64> for Cauchy
[src]
impl Univariate<f64, f64> for Cauchy
[src]