Struct statrs::distribution::LogNormal [−][src]
pub struct LogNormal { /* fields omitted */ }
Implements the Log-normal distribution
Examples
use statrs::distribution::{LogNormal, Continuous}; use statrs::statistics::Mean; use statrs::prec; let n = LogNormal::new(0.0, 1.0).unwrap(); assert_eq!(n.mean(), (0.5f64).exp()); assert!(prec::almost_eq(n.pdf(1.0), 0.3989422804014326779399, 1e-16));
Implementations
impl LogNormal
[src]
impl LogNormal
[src]pub fn new(location: f64, scale: f64) -> Result<LogNormal>
[src]
Constructs a new log-normal distribution with a location of location
and a scale of scale
Errors
Returns an error if location
or scale
are NaN
.
Returns an error if scale <= 0.0
Examples
use statrs::distribution::LogNormal; let mut result = LogNormal::new(0.0, 1.0); assert!(result.is_ok()); result = LogNormal::new(0.0, 0.0); assert!(result.is_err());
Trait Implementations
impl Continuous<f64, f64> for LogNormal
[src]
impl Continuous<f64, f64> for LogNormal
[src]fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the log-normal
distribution at x
Formula
ⓘ
(1 / xσ * sqrt(2π)) * e^(-((ln(x) - μ)^2) / 2σ^2)
where μ
is the location and σ
is the scale
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the log-normal
distribution at x
Formula
ⓘ
ln((1 / xσ * sqrt(2π)) * e^(-((ln(x) - μ)^2) / 2σ^2))
where μ
is the location and σ
is the scale
impl Distribution<f64> for LogNormal
[src]
impl Distribution<f64> for LogNormal
[src]impl Univariate<f64, f64> for LogNormal
[src]
impl Univariate<f64, f64> for LogNormal
[src]impl Variance<f64> for LogNormal
[src]
impl Variance<f64> for LogNormal
[src]fn variance(&self) -> f64
[src]
Returns the variance of the log-normal distribution
Formula
ⓘ
(e^(σ^2) - 1) * e^(2μ + σ^2)
where μ
is the location and σ
is the scale
fn std_dev(&self) -> f64
[src]
Returns the standard deviation of the log-normal distribution
Formula
ⓘ
sqrt((e^(σ^2) - 1) * e^(2μ + σ^2))
where μ
is the location and σ
is the scale