Struct statrs::distribution::Bernoulli [−][src]
pub struct Bernoulli { /* fields omitted */ }
Implements the
Bernoulli
distribution which is a special case of the
Binomial
distribution where n = 1
(referenced Here)
Examples
use statrs::distribution::{Bernoulli, Discrete}; use statrs::statistics::Mean; let n = Bernoulli::new(0.5).unwrap(); assert_eq!(n.mean(), 0.5); assert_eq!(n.pmf(0), 0.5); assert_eq!(n.pmf(1), 0.5);
Implementations
impl Bernoulli
[src]
impl Bernoulli
[src]pub fn new(p: f64) -> Result<Bernoulli>
[src]
Constructs a new bernoulli distribution with
the given p
probability of success.
Errors
Returns an error if p
is NaN
, less than 0.0
or greater than 1.0
Examples
use statrs::distribution::Bernoulli; let mut result = Bernoulli::new(0.5); assert!(result.is_ok()); result = Bernoulli::new(-0.5); assert!(result.is_err());
pub fn p(&self) -> f64
[src]
Returns the probability of success p
of the
bernoulli distribution.
Examples
use statrs::distribution::Bernoulli; let n = Bernoulli::new(0.5).unwrap(); assert_eq!(n.p(), 0.5);
pub fn n(&self) -> u64
[src]
Returns the number of trials n
of the
bernoulli distribution. Will always be 1.0
.
Examples
use statrs::distribution::Bernoulli; let n = Bernoulli::new(0.5).unwrap(); assert_eq!(n.n(), 1);
Trait Implementations
impl Discrete<u64, f64> for Bernoulli
[src]
impl Discrete<u64, f64> for Bernoulli
[src]fn pmf(&self, x: u64) -> f64
[src]
Calculates the probability mass function for the
bernoulli distribution at x
.
Formula
ⓘ
if x == 0 { 1 - p } else { p }
fn ln_pmf(&self, x: u64) -> f64
[src]
Calculates the log probability mass function for the
bernoulli distribution at x
.
Formula
ⓘ
else if x == 0 { ln(1 - p) } else { ln(p) }
impl Distribution<f64> for Bernoulli
[src]
impl Distribution<f64> for Bernoulli
[src]impl Univariate<u64, f64> for Bernoulli
[src]
impl Univariate<u64, f64> for Bernoulli
[src]