Struct statrs::distribution::ChiSquared [−][src]
pub struct ChiSquared { /* fields omitted */ }
Implements the Chi-squared distribution which is a special case of the Gamma distribution (referenced Here)
Examples
use statrs::distribution::{ChiSquared, Continuous}; use statrs::statistics::Mean; use statrs::prec; let n = ChiSquared::new(3.0).unwrap(); assert_eq!(n.mean(), 3.0); assert!(prec::almost_eq(n.pdf(4.0), 0.107981933026376103901, 1e-15));
Implementations
impl ChiSquared
[src]
impl ChiSquared
[src]pub fn new(freedom: f64) -> Result<ChiSquared>
[src]
Constructs a new chi-squared distribution with freedom
degrees of freedom. This is equivalent to a Gamma distribution
with a shape of freedom / 2.0
and a rate of 0.5
.
Errors
Returns an error if freedom
is NaN
or less than
or equal to 0.0
Examples
use statrs::distribution::ChiSquared; let mut result = ChiSquared::new(3.0); assert!(result.is_ok()); result = ChiSquared::new(0.0); assert!(result.is_err());
pub fn freedom(&self) -> f64
[src]
Returns the degrees of freedom of the chi-squared distribution
Examples
use statrs::distribution::ChiSquared; let n = ChiSquared::new(3.0).unwrap(); assert_eq!(n.freedom(), 3.0);
pub fn shape(&self) -> f64
[src]
Returns the shape of the underlying Gamma distribution
Examples
use statrs::distribution::ChiSquared; let n = ChiSquared::new(3.0).unwrap(); assert_eq!(n.shape(), 3.0 / 2.0);
pub fn rate(&self) -> f64
[src]
Returns the rate of the underlying Gamma distribution
Examples
use statrs::distribution::ChiSquared; let n = ChiSquared::new(3.0).unwrap(); assert_eq!(n.rate(), 0.5);
Trait Implementations
impl Clone for ChiSquared
[src]
impl Clone for ChiSquared
[src]fn clone(&self) -> ChiSquared
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Continuous<f64, f64> for ChiSquared
[src]
impl Continuous<f64, f64> for ChiSquared
[src]fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the chi-squared
distribution at x
Formula
ⓘ
1 / (2^(k / 2) * Γ(k / 2)) * x^((k / 2) - 1) * e^(-x / 2)
where k
is the degrees of freedom and Γ
is the gamma function
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the chi-squared
distribution at x
Formula
ⓘ
ln(1 / (2^(k / 2) * Γ(k / 2)) * x^((k / 2) - 1) * e^(-x / 2))
impl Distribution<f64> for ChiSquared
[src]
impl Distribution<f64> for ChiSquared
[src]impl Entropy<f64> for ChiSquared
[src]
impl Entropy<f64> for ChiSquared
[src]impl Max<f64> for ChiSquared
[src]
impl Max<f64> for ChiSquared
[src]impl Mean<f64> for ChiSquared
[src]
impl Mean<f64> for ChiSquared
[src]impl Median<f64> for ChiSquared
[src]
impl Median<f64> for ChiSquared
[src]impl Min<f64> for ChiSquared
[src]
impl Min<f64> for ChiSquared
[src]impl Mode<f64> for ChiSquared
[src]
impl Mode<f64> for ChiSquared
[src]impl PartialEq<ChiSquared> for ChiSquared
[src]
impl PartialEq<ChiSquared> for ChiSquared
[src]fn eq(&self, other: &ChiSquared) -> bool
[src]
fn ne(&self, other: &ChiSquared) -> bool
[src]
impl Skewness<f64> for ChiSquared
[src]
impl Skewness<f64> for ChiSquared
[src]impl Univariate<f64, f64> for ChiSquared
[src]
impl Univariate<f64, f64> for ChiSquared
[src]impl Variance<f64> for ChiSquared
[src]
impl Variance<f64> for ChiSquared
[src]