Struct statrs::distribution::Dirichlet [−][src]
pub struct Dirichlet { /* fields omitted */ }Implements the Dirichlet distribution
Examples
use statrs::distribution::{Dirichlet, Continuous}; use statrs::statistics::Mean; let n = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); assert_eq!(n.mean(), [1.0 / 6.0, 1.0 / 3.0, 0.5]); assert_eq!(n.pdf(&[0.33333, 0.33333, 0.33333]), 2.222155556222205);
Implementations
impl Dirichlet[src]
impl Dirichlet[src]pub fn new(alpha: &[f64]) -> Result<Dirichlet>[src]
Constructs a new dirichlet distribution with the given concenctration parameters (alpha)
Errors
Returns an error if any element x in alpha exist
such that x < = 0.0 or x is NaN, or if the length of alpha is
less than 2
Examples
use statrs::distribution::Dirichlet; let alpha_ok = [1.0, 2.0, 3.0]; let mut result = Dirichlet::new(&alpha_ok); assert!(result.is_ok()); let alpha_err = [0.0]; result = Dirichlet::new(&alpha_err); assert!(result.is_err());
pub fn new_with_param(alpha: f64, n: usize) -> Result<Dirichlet>[src]
Constructs a new dirichlet distribution with the given
concenctration parameter (alpha) repeated n times
Errors
Returns an error if alpha < = 0.0 or alpha is NaN,
or if n < 2
Examples
use statrs::distribution::Dirichlet; let mut result = Dirichlet::new_with_param(1.0, 3); assert!(result.is_ok()); result = Dirichlet::new_with_param(0.0, 1); assert!(result.is_err());
pub fn alpha(&self) -> &[f64][src]
Returns the concentration parameters of the dirichlet distribution as a slice
Examples
use statrs::distribution::Dirichlet; let n = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); assert_eq!(n.alpha(), [1.0, 2.0, 3.0]);
Trait Implementations
impl<'a> CheckedContinuous<&'a [f64], f64> for Dirichlet[src]
impl<'a> CheckedContinuous<&'a [f64], f64> for Dirichlet[src]fn checked_pdf(&self, x: &[f64]) -> Result<f64>[src]
Calculates the probabiliy density function for the dirichlet
distribution
with given x’s corresponding to the concentration parameters for this
distribution
Errors
If any element in x is not in (0, 1), the elements in x do not
sum to
1 with a tolerance of 1e-4, or if x is not the same length as
the vector of
concentration parameters for this distribution
Formula
(1 / B(α)) * Π(x_i^(α_i - 1))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α is the vector of concentration parameters, α_i is the ith
concentration parameter, x_i is the ith argument corresponding to
the ith concentration parameter, Γ is the gamma function,
Π is the product from 1 to K, Σ is the sum from 1 to K,
and K is the number of concentration parameters
fn checked_ln_pdf(&self, x: &[f64]) -> Result<f64>[src]
Calculates the log probabiliy density function for the dirichlet
distribution
with given x’s corresponding to the concentration parameters for this
distribution
Errors
If any element in x is not in (0, 1), the elements in x do not
sum to
1 with a tolerance of 1e-4, or if x is not the same length as
the vector of
concentration parameters for this distribution
Formula
ln((1 / B(α)) * Π(x_i^(α_i - 1)))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α is the vector of concentration parameters, α_i is the ith
concentration parameter, x_i is the ith argument corresponding to
the ith concentration parameter, Γ is the gamma function,
Π is the product from 1 to K, Σ is the sum from 1 to K,
and K is the number of concentration parameters
impl<'a> Continuous<&'a [f64], f64> for Dirichlet[src]
impl<'a> Continuous<&'a [f64], f64> for Dirichlet[src]fn pdf(&self, x: &[f64]) -> f64[src]
Calculates the probabiliy density function for the dirichlet
distribution
with given x’s corresponding to the concentration parameters for this
distribution
Panics
If any element in x is not in (0, 1), the elements in x do not
sum to
1 with a tolerance of 1e-4, or if x is not the same length as
the vector of
concentration parameters for this distribution
Formula
(1 / B(α)) * Π(x_i^(α_i - 1))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α is the vector of concentration parameters, α_i is the ith
concentration parameter, x_i is the ith argument corresponding to
the ith concentration parameter, Γ is the gamma function,
Π is the product from 1 to K, Σ is the sum from 1 to K,
and K is the number of concentration parameters
fn ln_pdf(&self, x: &[f64]) -> f64[src]
Calculates the log probabiliy density function for the dirichlet
distribution
with given x’s corresponding to the concentration parameters for this
distribution
Panics
If any element in x is not in (0, 1), the elements in x do not
sum to
1 with a tolerance of 1e-4, or if x is not the same length as
the vector of
concentration parameters for this distribution
Formula
ln((1 / B(α)) * Π(x_i^(α_i - 1)))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α is the vector of concentration parameters, α_i is the ith
concentration parameter, x_i is the ith argument corresponding to
the ith concentration parameter, Γ is the gamma function,
Π is the product from 1 to K, Σ is the sum from 1 to K,
and K is the number of concentration parameters
impl Entropy<f64> for Dirichlet[src]
impl Entropy<f64> for Dirichlet[src]fn entropy(&self) -> f64[src]
Returns the entropy of the dirichlet distribution
Formula
ln(B(α)) - (K - α_0)ψ(α_0) - Σ((α_i - 1)ψ(α_i))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α_0 is the sum of all concentration parameters,
K is the number of concentration parameters, ψ is the digamma
function, α_i
is the ith concentration parameter, and Σ is the sum from 1 to K
impl Variance<Vec<f64, Global>> for Dirichlet[src]
impl Variance<Vec<f64, Global>> for Dirichlet[src]fn variance(&self) -> Vec<f64>[src]
Returns the variances of the dirichlet distribution
Formula
(α_i * (α_0 - α_i)) / (α_0^2 * (α_0 + 1))
for the ith element where α_i is the ith concentration parameter
and α_0 is the sum of all concentration parameters
fn std_dev(&self) -> Vec<f64>[src]
Returns the standard deviation of the dirichlet distribution
Formula
sqrt((α_i * (α_0 - α_i)) / (α_0^2 * (α_0 + 1)))
for the ith element where α_i is the ith concentration parameter
and α_0 is the sum of all concentration parameters