Struct rand_distr::Gamma [−][src]
pub struct Gamma<N> { /* fields omitted */ }
The Gamma distribution Gamma(shape, scale)
distribution.
The density function of this distribution is
f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
where Γ
is the Gamma function, k
is the shape and θ
is the
scale and both k
and θ
are strictly positive.
The algorithm used is that described by Marsaglia & Tsang 20001,
falling back to directly sampling from an Exponential for shape == 1
, and using the boosting technique described in that paper for
shape < 1
.
Example
use rand_distr::{Distribution, Gamma}; let gamma = Gamma::new(2.0, 5.0).unwrap(); let v = gamma.sample(&mut rand::thread_rng()); println!("{} is from a Gamma(2, 5) distribution", v);
George Marsaglia and Wai Wan Tsang. 2000. “A Simple Method for Generating Gamma Variables” ACM Trans. Math. Softw. 26, 3 (September 2000), 363-372. DOI:10.1145/358407.358414 ↩
Implementations
impl<N: Float> Gamma<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]
impl<N: Float> Gamma<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]Trait Implementations
impl<N: Float> Distribution<N> for Gamma<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]
impl<N: Float> Distribution<N> for Gamma<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]impl<N: Copy> Copy for Gamma<N>
[src]
Auto Trait Implementations
impl<N> RefUnwindSafe for Gamma<N> where
N: RefUnwindSafe,
N: RefUnwindSafe,
impl<N> Send for Gamma<N> where
N: Send,
N: Send,
impl<N> Sync for Gamma<N> where
N: Sync,
N: Sync,
impl<N> Unpin for Gamma<N> where
N: Unpin,
N: Unpin,
impl<N> UnwindSafe for Gamma<N> where
N: UnwindSafe,
N: UnwindSafe,