Struct rand_distr::ChiSquared [−][src]
pub struct ChiSquared<N> { /* fields omitted */ }
The chi-squared distribution χ²(k)
, where k
is the degrees of
freedom.
For k > 0
integral, this distribution is the sum of the squares
of k
independent standard normal random variables. For other
k
, this uses the equivalent characterisation
χ²(k) = Gamma(k/2, 2)
.
Example
use rand_distr::{ChiSquared, Distribution}; let chi = ChiSquared::new(11.0).unwrap(); let v = chi.sample(&mut rand::thread_rng()); println!("{} is from a χ²(11) distribution", v)
Implementations
impl<N: Float> ChiSquared<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]
impl<N: Float> ChiSquared<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]pub fn new(k: N) -> Result<ChiSquared<N>, ChiSquaredError>
[src]
Create a new chi-squared distribution with degrees-of-freedom
k
.
Trait Implementations
impl<N: Clone> Clone for ChiSquared<N>
[src]
impl<N: Clone> Clone for ChiSquared<N>
[src]fn clone(&self) -> ChiSquared<N>
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl<N: Float> Distribution<N> for ChiSquared<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]
impl<N: Float> Distribution<N> for ChiSquared<N> where
StandardNormal: Distribution<N>,
Exp1: Distribution<N>,
Open01: Distribution<N>,
[src]impl<N: Copy> Copy for ChiSquared<N>
[src]
Auto Trait Implementations
impl<N> RefUnwindSafe for ChiSquared<N> where
N: RefUnwindSafe,
N: RefUnwindSafe,
impl<N> Send for ChiSquared<N> where
N: Send,
N: Send,
impl<N> Sync for ChiSquared<N> where
N: Sync,
N: Sync,
impl<N> Unpin for ChiSquared<N> where
N: Unpin,
N: Unpin,
impl<N> UnwindSafe for ChiSquared<N> where
N: UnwindSafe,
N: UnwindSafe,