Struct num_bigint::BigInt [−][src]
pub struct BigInt { /* fields omitted */ }
A big signed integer type.
Implementations
impl BigInt
[src]
impl BigInt
[src]pub fn new(sign: Sign, digits: Vec<u32>) -> BigInt
[src]
Creates and initializes a BigInt.
The base 232 digits are ordered least significant digit first.
pub fn from_biguint(sign: Sign, data: BigUint) -> BigInt
[src]
Creates and initializes a BigInt
.
The base 232 digits are ordered least significant digit first.
pub fn from_slice(sign: Sign, slice: &[u32]) -> BigInt
[src]
Creates and initializes a BigInt
.
The base 232 digits are ordered least significant digit first.
pub fn assign_from_slice(&mut self, sign: Sign, slice: &[u32])
[src]
Reinitializes a BigInt
.
The base 232 digits are ordered least significant digit first.
pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt
[src]
Creates and initializes a BigInt
.
The bytes are in big-endian byte order.
Examples
use num_bigint::{BigInt, Sign}; assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"), BigInt::parse_bytes(b"65", 10).unwrap()); assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"), BigInt::parse_bytes(b"16705", 10).unwrap()); assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"), BigInt::parse_bytes(b"16706", 10).unwrap()); assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"), BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt
[src]
Creates and initializes a BigInt
.
The bytes are in little-endian byte order.
pub fn from_signed_bytes_be(digits: &[u8]) -> BigInt
[src]
Creates and initializes a BigInt
from an array of bytes in
two’s complement binary representation.
The digits are in big-endian base 28.
pub fn from_signed_bytes_le(digits: &[u8]) -> BigInt
[src]
Creates and initializes a BigInt
from an array of bytes in two’s complement.
The digits are in little-endian base 28.
pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigInt>
[src]
Creates and initializes a BigInt
.
Examples
use num_bigint::{BigInt, ToBigInt}; assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234)); assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD)); assert_eq!(BigInt::parse_bytes(b"G", 16), None);
pub fn from_radix_be(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt>
[src]
Creates and initializes a BigInt
. Each u8 of the input slice is
interpreted as one digit of the number
and must therefore be less than radix
.
The bytes are in big-endian byte order.
radix
must be in the range 2...256
.
Examples
use num_bigint::{BigInt, Sign}; let inbase190 = vec![15, 33, 125, 12, 14]; let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap(); assert_eq!(a.to_radix_be(190), (Sign:: Minus, inbase190));
pub fn from_radix_le(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt>
[src]
Creates and initializes a BigInt
. Each u8 of the input slice is
interpreted as one digit of the number
and must therefore be less than radix
.
The bytes are in little-endian byte order.
radix
must be in the range 2...256
.
Examples
use num_bigint::{BigInt, Sign}; let inbase190 = vec![14, 12, 125, 33, 15]; let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap(); assert_eq!(a.to_radix_be(190), (Sign::Minus, inbase190));
pub fn to_bytes_be(&self) -> (Sign, Vec<u8>)
[src]
Returns the sign and the byte representation of the BigInt
in big-endian byte order.
Examples
use num_bigint::{ToBigInt, Sign}; let i = -1125.to_bigint().unwrap(); assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101]));
pub fn to_bytes_le(&self) -> (Sign, Vec<u8>)
[src]
Returns the sign and the byte representation of the BigInt
in little-endian byte order.
Examples
use num_bigint::{ToBigInt, Sign}; let i = -1125.to_bigint().unwrap(); assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4]));
pub fn to_u32_digits(&self) -> (Sign, Vec<u32>)
[src]
Returns the sign and the u32
digits representation of the BigInt
ordered least
significant digit first.
Examples
use num_bigint::{BigInt, Sign}; assert_eq!(BigInt::from(-1125).to_u32_digits(), (Sign::Minus, vec![1125])); assert_eq!(BigInt::from(4294967295u32).to_u32_digits(), (Sign::Plus, vec![4294967295])); assert_eq!(BigInt::from(4294967296u64).to_u32_digits(), (Sign::Plus, vec![0, 1])); assert_eq!(BigInt::from(-112500000000i64).to_u32_digits(), (Sign::Minus, vec![830850304, 26])); assert_eq!(BigInt::from(112500000000i64).to_u32_digits(), (Sign::Plus, vec![830850304, 26]));
pub fn to_signed_bytes_be(&self) -> Vec<u8>
[src]
Returns the two’s-complement byte representation of the BigInt
in big-endian byte order.
Examples
use num_bigint::ToBigInt; let i = -1125.to_bigint().unwrap(); assert_eq!(i.to_signed_bytes_be(), vec![251, 155]);
pub fn to_signed_bytes_le(&self) -> Vec<u8>
[src]
Returns the two’s-complement byte representation of the BigInt
in little-endian byte order.
Examples
use num_bigint::ToBigInt; let i = -1125.to_bigint().unwrap(); assert_eq!(i.to_signed_bytes_le(), vec![155, 251]);
pub fn to_str_radix(&self, radix: u32) -> String
[src]
Returns the integer formatted as a string in the given radix.
radix
must be in the range 2...36
.
Examples
use num_bigint::BigInt; let i = BigInt::parse_bytes(b"ff", 16).unwrap(); assert_eq!(i.to_str_radix(16), "ff");
pub fn to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>)
[src]
Returns the integer in the requested base in big-endian digit order.
The output is not given in a human readable alphabet but as a zero
based u8 number.
radix
must be in the range 2...256
.
Examples
use num_bigint::{BigInt, Sign}; assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159), (Sign::Minus, vec![2, 94, 27])); // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27
pub fn to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>)
[src]
Returns the integer in the requested base in little-endian digit order.
The output is not given in a human readable alphabet but as a zero
based u8 number.
radix
must be in the range 2...256
.
Examples
use num_bigint::{BigInt, Sign}; assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159), (Sign::Minus, vec![27, 94, 2])); // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)
pub fn sign(&self) -> Sign
[src]
Returns the sign of the BigInt
as a Sign
.
Examples
use num_bigint::{ToBigInt, Sign}; assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus); assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus); assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign);
pub fn bits(&self) -> usize
[src]
Determines the fewest bits necessary to express the BigInt
,
not including the sign.
pub fn to_biguint(&self) -> Option<BigUint>
[src]
Converts this BigInt
into a BigUint
, if it’s not negative.
pub fn checked_add(&self, v: &BigInt) -> Option<BigInt>
[src]
pub fn checked_sub(&self, v: &BigInt) -> Option<BigInt>
[src]
pub fn checked_mul(&self, v: &BigInt) -> Option<BigInt>
[src]
pub fn checked_div(&self, v: &BigInt) -> Option<BigInt>
[src]
pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self
[src]
Returns (self ^ exponent) mod modulus
Note that this rounds like mod_floor
, not like the %
operator,
which makes a difference when given a negative self
or modulus
.
The result will be in the interval [0, modulus)
for modulus > 0
,
or in the interval (modulus, 0]
for modulus < 0
Panics if the exponent is negative or the modulus is zero.
pub fn sqrt(&self) -> Self
[src]
Returns the truncated principal square root of self
–
see Roots::sqrt.
pub fn cbrt(&self) -> Self
[src]
Returns the truncated principal cube root of self
–
see Roots::cbrt.
pub fn nth_root(&self, n: u32) -> Self
[src]
Returns the truncated principal n
th root of self
–
See Roots::nth_root.
Trait Implementations
impl<'a> BitAndAssign<&'a BigInt> for BigInt
[src]
impl<'a> BitAndAssign<&'a BigInt> for BigInt
[src]fn bitand_assign(&mut self, other: &BigInt)
[src]
impl BitAndAssign<BigInt> for BigInt
[src]
impl BitAndAssign<BigInt> for BigInt
[src]fn bitand_assign(&mut self, other: BigInt)
[src]
impl<'a> BitOrAssign<&'a BigInt> for BigInt
[src]
impl<'a> BitOrAssign<&'a BigInt> for BigInt
[src]fn bitor_assign(&mut self, other: &BigInt)
[src]
impl BitOrAssign<BigInt> for BigInt
[src]
impl BitOrAssign<BigInt> for BigInt
[src]fn bitor_assign(&mut self, other: BigInt)
[src]
impl<'a> BitXorAssign<&'a BigInt> for BigInt
[src]
impl<'a> BitXorAssign<&'a BigInt> for BigInt
[src]fn bitxor_assign(&mut self, other: &BigInt)
[src]
impl BitXorAssign<BigInt> for BigInt
[src]
impl BitXorAssign<BigInt> for BigInt
[src]fn bitxor_assign(&mut self, other: BigInt)
[src]
impl CheckedAdd for BigInt
[src]
impl CheckedAdd for BigInt
[src]fn checked_add(&self, v: &BigInt) -> Option<BigInt>
[src]
impl CheckedDiv for BigInt
[src]
impl CheckedDiv for BigInt
[src]fn checked_div(&self, v: &BigInt) -> Option<BigInt>
[src]
impl CheckedMul for BigInt
[src]
impl CheckedMul for BigInt
[src]fn checked_mul(&self, v: &BigInt) -> Option<BigInt>
[src]
impl CheckedSub for BigInt
[src]
impl CheckedSub for BigInt
[src]fn checked_sub(&self, v: &BigInt) -> Option<BigInt>
[src]
impl FromPrimitive for BigInt
[src]
impl FromPrimitive for BigInt
[src]fn from_i64(n: i64) -> Option<BigInt>
[src]
fn from_i128(n: i128) -> Option<BigInt>
[src]
fn from_u64(n: u64) -> Option<BigInt>
[src]
fn from_u128(n: u128) -> Option<BigInt>
[src]
fn from_f64(n: f64) -> Option<BigInt>
[src]
pub fn from_isize(n: isize) -> Option<Self>
[src]
pub fn from_i8(n: i8) -> Option<Self>
[src]
pub fn from_i16(n: i16) -> Option<Self>
[src]
pub fn from_i32(n: i32) -> Option<Self>
[src]
pub fn from_usize(n: usize) -> Option<Self>
[src]
pub fn from_u8(n: u8) -> Option<Self>
[src]
pub fn from_u16(n: u16) -> Option<Self>
[src]
pub fn from_u32(n: u32) -> Option<Self>
[src]
pub fn from_f32(n: f32) -> Option<Self>
[src]
impl FromStr for BigInt
[src]
impl FromStr for BigInt
[src]type Err = ParseBigIntError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<BigInt, ParseBigIntError>
[src]
impl Integer for BigInt
[src]
impl Integer for BigInt
[src]fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt)
[src]
fn div_floor(&self, other: &BigInt) -> BigInt
[src]
fn mod_floor(&self, other: &BigInt) -> BigInt
[src]
fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt)
[src]
fn gcd(&self, other: &BigInt) -> BigInt
[src]
Calculates the Greatest Common Divisor (GCD) of the number and other
.
The result is always positive.
fn lcm(&self, other: &BigInt) -> BigInt
[src]
Calculates the Lowest Common Multiple (LCM) of the number and other
.
fn divides(&self, other: &BigInt) -> bool
[src]
Deprecated, use is_multiple_of
instead.
fn is_multiple_of(&self, other: &BigInt) -> bool
[src]
Returns true
if the number is a multiple of other
.
fn is_even(&self) -> bool
[src]
Returns true
if the number is divisible by 2
.
fn is_odd(&self) -> bool
[src]
Returns true
if the number is not divisible by 2
.
pub fn div_ceil(&self, other: &Self) -> Self
[src]
pub fn gcd_lcm(&self, other: &Self) -> (Self, Self)
[src]
pub fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self> where
Self: Clone,
[src]
Self: Clone,
pub fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) where
Self: Clone + Signed,
[src]
Self: Clone + Signed,
pub fn next_multiple_of(&self, other: &Self) -> Self where
Self: Clone,
[src]
Self: Clone,
pub fn prev_multiple_of(&self, other: &Self) -> Self where
Self: Clone,
[src]
Self: Clone,
impl Num for BigInt
[src]
impl Num for BigInt
[src]type FromStrRadixErr = ParseBigIntError
fn from_str_radix(s: &str, radix: u32) -> Result<BigInt, ParseBigIntError>
[src]
Creates and initializes a BigInt.
impl PartialOrd<BigInt> for BigInt
[src]
impl PartialOrd<BigInt> for BigInt
[src]impl ToPrimitive for BigInt
[src]
impl ToPrimitive for BigInt
[src]fn to_i64(&self) -> Option<i64>
[src]
fn to_i128(&self) -> Option<i128>
[src]
fn to_u64(&self) -> Option<u64>
[src]
fn to_u128(&self) -> Option<u128>
[src]
fn to_f32(&self) -> Option<f32>
[src]
fn to_f64(&self) -> Option<f64>
[src]
pub fn to_isize(&self) -> Option<isize>
[src]
pub fn to_i8(&self) -> Option<i8>
[src]
pub fn to_i16(&self) -> Option<i16>
[src]
pub fn to_i32(&self) -> Option<i32>
[src]
pub fn to_usize(&self) -> Option<usize>
[src]
pub fn to_u8(&self) -> Option<u8>
[src]
pub fn to_u16(&self) -> Option<u16>
[src]
pub fn to_u32(&self) -> Option<u32>
[src]
impl Eq for BigInt
[src]
Auto Trait Implementations
impl RefUnwindSafe for BigInt
impl Send for BigInt
impl Sync for BigInt
impl Unpin for BigInt
impl UnwindSafe for BigInt
Blanket Implementations
impl<I> Average for I where
I: Integer + Shr<usize, Output = I>,
&'a I: for<'a, 'b> BitAnd<&'b I>,
&'a I: for<'a, 'b> BitOr<&'b I>,
&'a I: for<'a, 'b> BitXor<&'b I>,
<&'a I as BitAnd<&'b I>>::Output == I,
<&'a I as BitOr<&'b I>>::Output == I,
<&'a I as BitXor<&'b I>>::Output == I,
[src]
impl<I> Average for I where
I: Integer + Shr<usize, Output = I>,
&'a I: for<'a, 'b> BitAnd<&'b I>,
&'a I: for<'a, 'b> BitOr<&'b I>,
&'a I: for<'a, 'b> BitXor<&'b I>,
<&'a I as BitAnd<&'b I>>::Output == I,
<&'a I as BitOr<&'b I>>::Output == I,
<&'a I as BitXor<&'b I>>::Output == I,
[src]pub fn average_floor(&self, other: &I) -> I
[src]
Returns the floor value of the average of self
and other
.
pub fn average_ceil(&self, other: &I) -> I
[src]
Returns the ceil value of the average of self
and other
.
impl<T> NumAssign for T where
T: Num + NumAssignOps<T>,
[src]
T: Num + NumAssignOps<T>,
impl<T, Rhs> NumAssignOps<Rhs> for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,
[src]
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>,
impl<T> NumAssignRef for T where
T: NumAssign + for<'r> NumAssignOps<&'r T>,
[src]
T: NumAssign + for<'r> NumAssignOps<&'r T>,
impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>,
[src]
T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>,
impl<T> NumRef for T where
T: Num + for<'r> NumOps<&'r T, T>,
[src]
T: Num + for<'r> NumOps<&'r T, T>,
impl<T, Base> RefNum<Base> for T where
T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base>,
[src]
T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base>,