Files
addr2line
adler
aead
aes
aes_gcm
aes_soft
ahash
aho_corasick
ansi_term
anyhow
approx
arrayref
arrayvec
asn1_der
asn1_der_derive
async_channel
async_executor
async_global_executor
async_io
async_lock
async_mutex
async_process
async_std
collections
fs
future
io
net
option
os
path
pin
result
rt
stream
string
sync
task
unit
vec
async_task
async_trait
asynchronous_codec
atomic
atomic_waker
atty
backtrace
base58
base64
base_x
bincode
bip39
bitflags
bitvec
blake2
blake2_rfc
blake2b_simd
blake2s_simd
blake3
block_buffer
block_cipher
block_padding
blocking
bs58
bstr
bumpalo
byte_slice_cast
byteorder
bytes
cache_padded
cfg_if
chacha20
chacha20poly1305
chrono
cid
cipher
clap
concurrent_queue
constant_time_eq
convert_case
cpp_demangle
cpuid_bool
cranelift_bforest
cranelift_codegen
cranelift_codegen_shared
cranelift_entity
cranelift_frontend
cranelift_native
cranelift_wasm
crc32fast
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
crunchy
crypto_mac
ct_logs
ctor
cuckoofilter
curve25519_dalek
data_encoding
data_encoding_macro
data_encoding_macro_internal
derive_more
digest
directories
directories_next
dirs_sys
dirs_sys_next
dns_parser
dyn_clonable
dyn_clonable_impl
dyn_clone
ed25519
ed25519_dalek
either
env_logger
environmental
erased_serde
errno
event_listener
exit_future
failure
failure_derive
fallible_iterator
fastrand
fdlimit
file_per_thread_logger
finality_grandpa
fixed_hash
flate2
fnv
fork_tree
form_urlencoded
frame_benchmarking
frame_benchmarking_cli
frame_executive
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
frame_system_rpc_runtime_api
fs2
fs_swap
funty
futures
futures_channel
futures_core
futures_diagnose
futures_executor
futures_io
futures_lite
futures_macro
futures_rustls
futures_sink
futures_task
futures_timer
futures_util
async_await
compat
future
io
lock
sink
stream
task
generic_array
getrandom
ghash
gimli
globset
governance_os_node
governance_os_pallet_bylaws
governance_os_pallet_coin_voting
governance_os_pallet_compat
governance_os_pallet_conviction_voting
governance_os_pallet_organizations
governance_os_pallet_plcr_voting
governance_os_pallet_tokens
governance_os_primitives
governance_os_runtime
governance_os_support
h2
handlebars
hash256_std_hasher
hash_db
hashbrown
heck
hex
hex_fmt
hmac
hmac_drbg
http
http_body
httparse
httpdate
humantime
hyper
hyper_rustls
idna
if_watch
impl_codec
impl_serde
impl_trait_for_tuples
indexmap
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
instant
integer_sqrt
intervalier
iovec
ip_network
ipnet
itertools
itoa
js_sys
jsonrpc_client_transports
jsonrpc_core
jsonrpc_core_client
jsonrpc_derive
jsonrpc_http_server
jsonrpc_ipc_server
jsonrpc_pubsub
jsonrpc_server_utils
jsonrpc_ws_server
keccak
kv_log_macro
kvdb
kvdb_memorydb
kvdb_rocksdb
lazy_static
lazycell
leb128
libc
libm
libp2p
libp2p_core
libp2p_core_derive
libp2p_deflate
libp2p_dns
libp2p_floodsub
libp2p_gossipsub
libp2p_identify
libp2p_kad
libp2p_mdns
libp2p_mplex
libp2p_noise
libp2p_ping
libp2p_plaintext
libp2p_pnet
libp2p_request_response
libp2p_swarm
libp2p_tcp
libp2p_uds
libp2p_wasm_ext
libp2p_websocket
libp2p_yamux
librocksdb_sys
libz_sys
linked_hash_map
linked_hash_set
linregress
lock_api
log
lru
maplit
matchers
matches
matrixmultiply
memchr
memmap2
memoffset
memory_db
memory_units
merlin
minicbor
minicbor_derive
miniz_oxide
mio
mio_extras
mio_named_pipes
mio_uds
miow
more_asserts
multibase
multihash
multihash_derive
multistream_select
nalgebra
base
geometry
linalg
names
nb_connect
net2
nohash_hasher
num_bigint
num_complex
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
openssl_probe
owning_ref
pallet_aura
pallet_authorship
pallet_grandpa
pallet_randomness_collective_flip
pallet_session
pallet_timestamp
pallet_transaction_payment
pallet_transaction_payment_rpc
pallet_transaction_payment_rpc_runtime_api
parity_db
parity_multiaddr
parity_scale_codec
parity_scale_codec_derive
parity_send_wrapper
parity_tokio_ipc
parity_util_mem
parity_util_mem_derive
parity_wasm
parity_ws
parking
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pdqselect
percent_encoding
pest
pest_derive
pest_generator
pest_meta
pin_project
pin_project_lite
pin_utils
polling
poly1305
polyval
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
prometheus
prost
prost_derive
psm
pwasm_utils
quick_error
quicksink
quote
radium
rand
rand_chacha
rand_core
rand_distr
raw_cpuid
rawpointer
rayon
rayon_core
ref_cast
ref_cast_impl
regalloc
regex
regex_automata
regex_syntax
region
remove_dir_all
retain_mut
ring
rocksdb
rpassword
rustc_demangle
rustc_hash
rustc_hex
rustls
rustls_native_certs
rw_stream_sink
ryu
safe_mix
salsa20
sc_basic_authorship
sc_block_builder
sc_chain_spec
sc_chain_spec_derive
sc_cli
sc_client_api
sc_client_db
sc_consensus
sc_consensus_aura
sc_consensus_babe
sc_consensus_epochs
sc_consensus_slots
sc_consensus_uncles
sc_executor
sc_executor_common
sc_executor_wasmi
sc_executor_wasmtime
sc_finality_grandpa
sc_informant
sc_keystore
sc_light
sc_network
sc_network_gossip
sc_offchain
sc_peerset
sc_proposer_metrics
sc_rpc
sc_rpc_api
sc_rpc_server
sc_service
sc_state_db
sc_telemetry
sc_tracing
sc_tracing_proc_macro
sc_transaction_graph
sc_transaction_pool
schnorrkel
scoped_tls
scopeguard
scroll
scroll_derive
sct
secp256k1
secrecy
serde
serde_derive
serde_json
sha1
sha2
sha3
sharded_slab
signal_hook
signal_hook_registry
signature
simba
slab
smallvec
snow
socket2
soketto
sp_allocator
sp_api
sp_api_proc_macro
sp_application_crypto
sp_arithmetic
sp_authorship
sp_block_builder
sp_blockchain
sp_chain_spec
sp_consensus
sp_consensus_aura
sp_consensus_babe
sp_consensus_slots
sp_consensus_vrf
sp_core
sp_database
sp_debug_derive
sp_externalities
sp_finality_grandpa
sp_inherents
sp_io
sp_keyring
sp_keystore
sp_offchain
sp_panic_handler
sp_rpc
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_serializer
sp_session
sp_staking
sp_state_machine
sp_std
sp_storage
sp_tasks
sp_timestamp
sp_tracing
sp_transaction_pool
sp_trie
sp_utils
sp_version
sp_wasm_interface
spin
stable_deref_trait
static_assertions
statrs
stream_cipher
strsim
structopt
structopt_derive
strum
strum_macros
substrate_bip39
substrate_frame_rpc_system
substrate_prometheus_endpoint
subtle
syn
synstructure
take_mut
tap
target_lexicon
tempfile
termcolor
textwrap
thiserror
thiserror_impl
thread_local
threadpool
time
tiny_keccak
tinyvec
tinyvec_macros
tokio
future
io
loom
macros
net
park
runtime
signal
stream
sync
task
time
util
tokio_codec
tokio_executor
tokio_io
tokio_named_pipes
tokio_reactor
tokio_rustls
tokio_service
tokio_sync
tokio_uds
tokio_util
toml
tower_service
tracing
tracing_attributes
tracing_core
tracing_futures
tracing_log
tracing_serde
tracing_subscriber
trie_db
trie_root
try_lock
twox_hash
typenum
ucd_trie
uint
unicase
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
universal_hash
unsigned_varint
untrusted
url
value_bag
vec_arena
vec_map
void
waker_fn
want
wasm_bindgen
wasm_bindgen_backend
wasm_bindgen_futures
wasm_bindgen_macro
wasm_bindgen_macro_support
wasm_bindgen_shared
wasm_timer
wasmi
wasmi_validation
wasmparser
wasmtime
wasmtime_cache
wasmtime_cranelift
wasmtime_debug
wasmtime_environ
wasmtime_jit
wasmtime_obj
wasmtime_profiling
wasmtime_runtime
wast
wat
webpki
webpki_roots
winapi
wyz
x25519_dalek
yamux
zeroize
zeroize_derive
zstd
zstd_safe
zstd_sys
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
use num::{One, Zero};
use std::cmp;
#[cfg(any(feature = "std", feature = "alloc"))]
use std::iter::ExactSizeIterator;
#[cfg(any(feature = "std", feature = "alloc"))]
use std::mem;
use std::ptr;

use crate::base::allocator::{Allocator, Reallocator};
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::dimension::Dynamic;
use crate::base::dimension::{
    Dim, DimAdd, DimDiff, DimMin, DimMinimum, DimName, DimSub, DimSum, U1,
};
use crate::base::storage::{Storage, StorageMut};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::DMatrix;
use crate::base::{DefaultAllocator, Matrix, MatrixMN, RowVector, Scalar, Vector};

impl<N: Scalar + Zero, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
    /// Extracts the upper triangular part of this matrix (including the diagonal).
    #[inline]
    pub fn upper_triangle(&self) -> MatrixMN<N, R, C>
    where
        DefaultAllocator: Allocator<N, R, C>,
    {
        let mut res = self.clone_owned();
        res.fill_lower_triangle(N::zero(), 1);

        res
    }

    /// Extracts the lower triangular part of this matrix (including the diagonal).
    #[inline]
    pub fn lower_triangle(&self) -> MatrixMN<N, R, C>
    where
        DefaultAllocator: Allocator<N, R, C>,
    {
        let mut res = self.clone_owned();
        res.fill_upper_triangle(N::zero(), 1);

        res
    }

    /// Creates a new matrix by extracting the given set of rows from `self`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn select_rows<'a, I>(&self, irows: I) -> MatrixMN<N, Dynamic, C>
    where
        I: IntoIterator<Item = &'a usize>,
        I::IntoIter: ExactSizeIterator + Clone,
        DefaultAllocator: Allocator<N, Dynamic, C>,
    {
        let irows = irows.into_iter();
        let ncols = self.data.shape().1;
        let mut res =
            unsafe { MatrixMN::new_uninitialized_generic(Dynamic::new(irows.len()), ncols) };

        // First, check that all the indices from irows are valid.
        // This will allow us to use unchecked access in the inner loop.
        for i in irows.clone() {
            assert!(*i < self.nrows(), "Row index out of bounds.")
        }

        for j in 0..ncols.value() {
            // FIXME: use unchecked column indexing
            let mut res = res.column_mut(j);
            let src = self.column(j);

            for (destination, source) in irows.clone().enumerate() {
                unsafe {
                    *res.vget_unchecked_mut(destination) =
                        src.vget_unchecked(*source).inlined_clone()
                }
            }
        }

        res
    }

    /// Creates a new matrix by extracting the given set of columns from `self`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn select_columns<'a, I>(&self, icols: I) -> MatrixMN<N, R, Dynamic>
    where
        I: IntoIterator<Item = &'a usize>,
        I::IntoIter: ExactSizeIterator,
        DefaultAllocator: Allocator<N, R, Dynamic>,
    {
        let icols = icols.into_iter();
        let nrows = self.data.shape().0;
        let mut res =
            unsafe { MatrixMN::new_uninitialized_generic(nrows, Dynamic::new(icols.len())) };

        for (destination, source) in icols.enumerate() {
            res.column_mut(destination).copy_from(&self.column(*source))
        }

        res
    }
}

impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
    /// Sets all the elements of this matrix to `val`.
    #[inline]
    pub fn fill(&mut self, val: N) {
        for e in self.iter_mut() {
            *e = val.inlined_clone()
        }
    }

    /// Fills `self` with the identity matrix.
    #[inline]
    pub fn fill_with_identity(&mut self)
    where
        N: Zero + One,
    {
        self.fill(N::zero());
        self.fill_diagonal(N::one());
    }

    /// Sets all the diagonal elements of this matrix to `val`.
    #[inline]
    pub fn fill_diagonal(&mut self, val: N) {
        let (nrows, ncols) = self.shape();
        let n = cmp::min(nrows, ncols);

        for i in 0..n {
            unsafe { *self.get_unchecked_mut((i, i)) = val.inlined_clone() }
        }
    }

    /// Sets all the elements of the selected row to `val`.
    #[inline]
    pub fn fill_row(&mut self, i: usize, val: N) {
        assert!(i < self.nrows(), "Row index out of bounds.");
        for j in 0..self.ncols() {
            unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
        }
    }

    /// Sets all the elements of the selected column to `val`.
    #[inline]
    pub fn fill_column(&mut self, j: usize, val: N) {
        assert!(j < self.ncols(), "Row index out of bounds.");
        for i in 0..self.nrows() {
            unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
        }
    }

    /// Fills the diagonal of this matrix with the content of the given vector.
    #[inline]
    pub fn set_diagonal<R2: Dim, S2>(&mut self, diag: &Vector<N, R2, S2>)
    where
        R: DimMin<C>,
        S2: Storage<N, R2>,
        ShapeConstraint: DimEq<DimMinimum<R, C>, R2>,
    {
        let (nrows, ncols) = self.shape();
        let min_nrows_ncols = cmp::min(nrows, ncols);
        assert_eq!(diag.len(), min_nrows_ncols, "Mismatched dimensions.");

        for i in 0..min_nrows_ncols {
            unsafe { *self.get_unchecked_mut((i, i)) = diag.vget_unchecked(i).inlined_clone() }
        }
    }

    /// Fills the diagonal of this matrix with the content of the given iterator.
    ///
    /// This will fill as many diagonal elements as the iterator yields, up to the
    /// minimum of the number of rows and columns of `self`, and starting with the
    /// diagonal element at index (0, 0).
    #[inline]
    pub fn set_partial_diagonal(&mut self, diag: impl Iterator<Item = N>) {
        let (nrows, ncols) = self.shape();
        let min_nrows_ncols = cmp::min(nrows, ncols);

        for (i, val) in diag.enumerate().take(min_nrows_ncols) {
            unsafe { *self.get_unchecked_mut((i, i)) = val }
        }
    }

    /// Fills the selected row of this matrix with the content of the given vector.
    #[inline]
    pub fn set_row<C2: Dim, S2>(&mut self, i: usize, row: &RowVector<N, C2, S2>)
    where
        S2: Storage<N, U1, C2>,
        ShapeConstraint: SameNumberOfColumns<C, C2>,
    {
        self.row_mut(i).copy_from(row);
    }

    /// Fills the selected column of this matrix with the content of the given vector.
    #[inline]
    pub fn set_column<R2: Dim, S2>(&mut self, i: usize, column: &Vector<N, R2, S2>)
    where
        S2: Storage<N, R2, U1>,
        ShapeConstraint: SameNumberOfRows<R, R2>,
    {
        self.column_mut(i).copy_from(column);
    }

    /// Sets all the elements of the lower-triangular part of this matrix to `val`.
    ///
    /// The parameter `shift` allows some subdiagonals to be left untouched:
    /// * If `shift = 0` then the diagonal is overwritten as well.
    /// * If `shift = 1` then the diagonal is left untouched.
    /// * If `shift > 1`, then the diagonal and the first `shift - 1` subdiagonals are left
    /// untouched.
    #[inline]
    pub fn fill_lower_triangle(&mut self, val: N, shift: usize) {
        for j in 0..self.ncols() {
            for i in (j + shift)..self.nrows() {
                unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
            }
        }
    }

    /// Sets all the elements of the lower-triangular part of this matrix to `val`.
    ///
    /// The parameter `shift` allows some superdiagonals to be left untouched:
    /// * If `shift = 0` then the diagonal is overwritten as well.
    /// * If `shift = 1` then the diagonal is left untouched.
    /// * If `shift > 1`, then the diagonal and the first `shift - 1` superdiagonals are left
    /// untouched.
    #[inline]
    pub fn fill_upper_triangle(&mut self, val: N, shift: usize) {
        for j in shift..self.ncols() {
            // FIXME: is there a more efficient way to avoid the min ?
            // (necessary for rectangular matrices)
            for i in 0..cmp::min(j + 1 - shift, self.nrows()) {
                unsafe { *self.get_unchecked_mut((i, j)) = val.inlined_clone() }
            }
        }
    }

    /// Swaps two rows in-place.
    #[inline]
    pub fn swap_rows(&mut self, irow1: usize, irow2: usize) {
        assert!(irow1 < self.nrows() && irow2 < self.nrows());

        if irow1 != irow2 {
            // FIXME: optimize that.
            for i in 0..self.ncols() {
                unsafe { self.swap_unchecked((irow1, i), (irow2, i)) }
            }
        }
        // Otherwise do nothing.
    }

    /// Swaps two columns in-place.
    #[inline]
    pub fn swap_columns(&mut self, icol1: usize, icol2: usize) {
        assert!(icol1 < self.ncols() && icol2 < self.ncols());

        if icol1 != icol2 {
            // FIXME: optimize that.
            for i in 0..self.nrows() {
                unsafe { self.swap_unchecked((i, icol1), (i, icol2)) }
            }
        }
        // Otherwise do nothing.
    }
}

impl<N: Scalar, D: Dim, S: StorageMut<N, D, D>> Matrix<N, D, D, S> {
    /// Copies the upper-triangle of this matrix to its lower-triangular part.
    ///
    /// This makes the matrix symmetric. Panics if the matrix is not square.
    pub fn fill_lower_triangle_with_upper_triangle(&mut self) {
        assert!(self.is_square(), "The input matrix should be square.");

        let dim = self.nrows();
        for j in 0..dim {
            for i in j + 1..dim {
                unsafe {
                    *self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).inlined_clone();
                }
            }
        }
    }

    /// Copies the upper-triangle of this matrix to its upper-triangular part.
    ///
    /// This makes the matrix symmetric. Panics if the matrix is not square.
    pub fn fill_upper_triangle_with_lower_triangle(&mut self) {
        assert!(self.is_square(), "The input matrix should be square.");

        for j in 1..self.ncols() {
            for i in 0..j {
                unsafe {
                    *self.get_unchecked_mut((i, j)) = self.get_unchecked((j, i)).inlined_clone();
                }
            }
        }
    }
}

/*
 *
 * FIXME: specialize all the following for slices.
 *
 */
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
    /*
     *
     * Column removal.
     *
     */
    /// Removes the `i`-th column from this matrix.
    #[inline]
    pub fn remove_column(self, i: usize) -> MatrixMN<N, R, DimDiff<C, U1>>
    where
        C: DimSub<U1>,
        DefaultAllocator: Reallocator<N, R, C, R, DimDiff<C, U1>>,
    {
        self.remove_fixed_columns::<U1>(i)
    }

    /// Removes all columns in `indices`   
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_columns_at(self, indices: &[usize]) -> MatrixMN<N, R, Dynamic>
    where
        C: DimSub<Dynamic, Output = Dynamic>,
        DefaultAllocator: Reallocator<N, R, C, R, Dynamic>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.data.shape();
        let mut offset: usize = 0;
        let mut target: usize = 0;
        while offset + target < ncols.value() {
            if indices.contains(&(target + offset)) {
                offset += 1;
            } else {
                unsafe {
                    let ptr_source = m
                        .data
                        .ptr()
                        .offset(((target + offset) * nrows.value()) as isize);
                    let ptr_target = m.data.ptr_mut().offset((target * nrows.value()) as isize);

                    ptr::copy(ptr_source, ptr_target, nrows.value());
                    target += 1;
                }
            }
        }

        unsafe {
            Matrix::from_data(DefaultAllocator::reallocate_copy(
                nrows,
                ncols.sub(Dynamic::from_usize(offset)),
                m.data,
            ))
        }
    }

    /// Removes all rows in `indices`   
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_rows_at(self, indices: &[usize]) -> MatrixMN<N, Dynamic, C>
    where
        R: DimSub<Dynamic, Output = Dynamic>,
        DefaultAllocator: Reallocator<N, R, C, Dynamic, C>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.data.shape();
        let mut offset: usize = 0;
        let mut target: usize = 0;
        while offset + target < nrows.value() * ncols.value() {
            if indices.contains(&((target + offset) % nrows.value())) {
                offset += 1;
            } else {
                unsafe {
                    let ptr_source = m.data.ptr().offset((target + offset) as isize);
                    let ptr_target = m.data.ptr_mut().offset(target as isize);

                    ptr::copy(ptr_source, ptr_target, 1);
                    target += 1;
                }
            }
        }

        unsafe {
            Matrix::from_data(DefaultAllocator::reallocate_copy(
                nrows.sub(Dynamic::from_usize(offset / ncols.value())),
                ncols,
                m.data,
            ))
        }
    }

    /// Removes `D::dim()` consecutive columns from this matrix, starting with the `i`-th
    /// (included).
    #[inline]
    pub fn remove_fixed_columns<D>(self, i: usize) -> MatrixMN<N, R, DimDiff<C, D>>
    where
        D: DimName,
        C: DimSub<D>,
        DefaultAllocator: Reallocator<N, R, C, R, DimDiff<C, D>>,
    {
        self.remove_columns_generic(i, D::name())
    }

    /// Removes `n` consecutive columns from this matrix, starting with the `i`-th (included).
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_columns(self, i: usize, n: usize) -> MatrixMN<N, R, Dynamic>
    where
        C: DimSub<Dynamic, Output = Dynamic>,
        DefaultAllocator: Reallocator<N, R, C, R, Dynamic>,
    {
        self.remove_columns_generic(i, Dynamic::new(n))
    }

    /// Removes `nremove.value()` columns from this matrix, starting with the `i`-th (included).
    ///
    /// This is the generic implementation of `.remove_columns(...)` and
    /// `.remove_fixed_columns(...)` which have nicer API interfaces.
    #[inline]
    pub fn remove_columns_generic<D>(self, i: usize, nremove: D) -> MatrixMN<N, R, DimDiff<C, D>>
    where
        D: Dim,
        C: DimSub<D>,
        DefaultAllocator: Reallocator<N, R, C, R, DimDiff<C, D>>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.data.shape();
        assert!(
            i + nremove.value() <= ncols.value(),
            "Column index out of range."
        );

        if nremove.value() != 0 && i + nremove.value() < ncols.value() {
            // The first `deleted_i * nrows` are left untouched.
            let copied_value_start = i + nremove.value();

            unsafe {
                let ptr_in = m
                    .data
                    .ptr()
                    .offset((copied_value_start * nrows.value()) as isize);
                let ptr_out = m.data.ptr_mut().offset((i * nrows.value()) as isize);

                ptr::copy(
                    ptr_in,
                    ptr_out,
                    (ncols.value() - copied_value_start) * nrows.value(),
                );
            }
        }

        unsafe {
            Matrix::from_data(DefaultAllocator::reallocate_copy(
                nrows,
                ncols.sub(nremove),
                m.data,
            ))
        }
    }

    /*
     *
     * Row removal.
     *
     */
    /// Removes the `i`-th row from this matrix.
    #[inline]
    pub fn remove_row(self, i: usize) -> MatrixMN<N, DimDiff<R, U1>, C>
    where
        R: DimSub<U1>,
        DefaultAllocator: Reallocator<N, R, C, DimDiff<R, U1>, C>,
    {
        self.remove_fixed_rows::<U1>(i)
    }

    /// Removes `D::dim()` consecutive rows from this matrix, starting with the `i`-th (included).
    #[inline]
    pub fn remove_fixed_rows<D>(self, i: usize) -> MatrixMN<N, DimDiff<R, D>, C>
    where
        D: DimName,
        R: DimSub<D>,
        DefaultAllocator: Reallocator<N, R, C, DimDiff<R, D>, C>,
    {
        self.remove_rows_generic(i, D::name())
    }

    /// Removes `n` consecutive rows from this matrix, starting with the `i`-th (included).
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn remove_rows(self, i: usize, n: usize) -> MatrixMN<N, Dynamic, C>
    where
        R: DimSub<Dynamic, Output = Dynamic>,
        DefaultAllocator: Reallocator<N, R, C, Dynamic, C>,
    {
        self.remove_rows_generic(i, Dynamic::new(n))
    }

    /// Removes `nremove.value()` rows from this matrix, starting with the `i`-th (included).
    ///
    /// This is the generic implementation of `.remove_rows(...)` and `.remove_fixed_rows(...)`
    /// which have nicer API interfaces.
    #[inline]
    pub fn remove_rows_generic<D>(self, i: usize, nremove: D) -> MatrixMN<N, DimDiff<R, D>, C>
    where
        D: Dim,
        R: DimSub<D>,
        DefaultAllocator: Reallocator<N, R, C, DimDiff<R, D>, C>,
    {
        let mut m = self.into_owned();
        let (nrows, ncols) = m.data.shape();
        assert!(
            i + nremove.value() <= nrows.value(),
            "Row index out of range."
        );

        if nremove.value() != 0 {
            unsafe {
                compress_rows(
                    &mut m.data.as_mut_slice(),
                    nrows.value(),
                    ncols.value(),
                    i,
                    nremove.value(),
                );
            }
        }

        unsafe {
            Matrix::from_data(DefaultAllocator::reallocate_copy(
                nrows.sub(nremove),
                ncols,
                m.data,
            ))
        }
    }

    /*
     *
     * Columns insertion.
     *
     */
    /// Inserts a column filled with `val` at the `i-th` position.
    #[inline]
    pub fn insert_column(self, i: usize, val: N) -> MatrixMN<N, R, DimSum<C, U1>>
    where
        C: DimAdd<U1>,
        DefaultAllocator: Reallocator<N, R, C, R, DimSum<C, U1>>,
    {
        self.insert_fixed_columns::<U1>(i, val)
    }

    /// Inserts `D::dim()` columns filled with `val` starting at the `i-th` position.
    #[inline]
    pub fn insert_fixed_columns<D>(self, i: usize, val: N) -> MatrixMN<N, R, DimSum<C, D>>
    where
        D: DimName,
        C: DimAdd<D>,
        DefaultAllocator: Reallocator<N, R, C, R, DimSum<C, D>>,
    {
        let mut res = unsafe { self.insert_columns_generic_uninitialized(i, D::name()) };
        res.fixed_columns_mut::<D>(i).fill(val);
        res
    }

    /// Inserts `n` columns filled with `val` starting at the `i-th` position.
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn insert_columns(self, i: usize, n: usize, val: N) -> MatrixMN<N, R, Dynamic>
    where
        C: DimAdd<Dynamic, Output = Dynamic>,
        DefaultAllocator: Reallocator<N, R, C, R, Dynamic>,
    {
        let mut res = unsafe { self.insert_columns_generic_uninitialized(i, Dynamic::new(n)) };
        res.columns_mut(i, n).fill(val);
        res
    }

    /// Inserts `ninsert.value()` columns starting at the `i-th` place of this matrix.
    ///
    /// The added column values are not initialized.
    #[inline]
    pub unsafe fn insert_columns_generic_uninitialized<D>(
        self,
        i: usize,
        ninsert: D,
    ) -> MatrixMN<N, R, DimSum<C, D>>
    where
        D: Dim,
        C: DimAdd<D>,
        DefaultAllocator: Reallocator<N, R, C, R, DimSum<C, D>>,
    {
        let m = self.into_owned();
        let (nrows, ncols) = m.data.shape();
        let mut res = Matrix::from_data(DefaultAllocator::reallocate_copy(
            nrows,
            ncols.add(ninsert),
            m.data,
        ));

        assert!(i <= ncols.value(), "Column insertion index out of range.");

        if ninsert.value() != 0 && i != ncols.value() {
            let ptr_in = res.data.ptr().offset((i * nrows.value()) as isize);
            let ptr_out = res
                .data
                .ptr_mut()
                .offset(((i + ninsert.value()) * nrows.value()) as isize);

            ptr::copy(ptr_in, ptr_out, (ncols.value() - i) * nrows.value())
        }

        res
    }

    /*
     *
     * Rows insertion.
     *
     */
    /// Inserts a row filled with `val` at the `i-th` position.
    #[inline]
    pub fn insert_row(self, i: usize, val: N) -> MatrixMN<N, DimSum<R, U1>, C>
    where
        R: DimAdd<U1>,
        DefaultAllocator: Reallocator<N, R, C, DimSum<R, U1>, C>,
    {
        self.insert_fixed_rows::<U1>(i, val)
    }

    /// Inserts `D::dim()` rows filled with `val` starting at the `i-th` position.
    #[inline]
    pub fn insert_fixed_rows<D>(self, i: usize, val: N) -> MatrixMN<N, DimSum<R, D>, C>
    where
        D: DimName,
        R: DimAdd<D>,
        DefaultAllocator: Reallocator<N, R, C, DimSum<R, D>, C>,
    {
        let mut res = unsafe { self.insert_rows_generic_uninitialized(i, D::name()) };
        res.fixed_rows_mut::<D>(i).fill(val);
        res
    }

    /// Inserts `n` rows filled with `val` starting at the `i-th` position.
    #[inline]
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn insert_rows(self, i: usize, n: usize, val: N) -> MatrixMN<N, Dynamic, C>
    where
        R: DimAdd<Dynamic, Output = Dynamic>,
        DefaultAllocator: Reallocator<N, R, C, Dynamic, C>,
    {
        let mut res = unsafe { self.insert_rows_generic_uninitialized(i, Dynamic::new(n)) };
        res.rows_mut(i, n).fill(val);
        res
    }

    /// Inserts `ninsert.value()` rows at the `i-th` place of this matrix.
    ///
    /// The added rows values are not initialized.
    /// This is the generic implementation of `.insert_rows(...)` and
    /// `.insert_fixed_rows(...)` which have nicer API interfaces.
    #[inline]
    pub unsafe fn insert_rows_generic_uninitialized<D>(
        self,
        i: usize,
        ninsert: D,
    ) -> MatrixMN<N, DimSum<R, D>, C>
    where
        D: Dim,
        R: DimAdd<D>,
        DefaultAllocator: Reallocator<N, R, C, DimSum<R, D>, C>,
    {
        let m = self.into_owned();
        let (nrows, ncols) = m.data.shape();
        let mut res = Matrix::from_data(DefaultAllocator::reallocate_copy(
            nrows.add(ninsert),
            ncols,
            m.data,
        ));

        assert!(i <= nrows.value(), "Row insertion index out of range.");

        if ninsert.value() != 0 {
            extend_rows(
                &mut res.data.as_mut_slice(),
                nrows.value(),
                ncols.value(),
                i,
                ninsert.value(),
            );
        }

        res
    }

    /*
     *
     * Resizing.
     *
     */

    /// Resizes this matrix so that it contains `new_nrows` rows and `new_ncols` columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize(self, new_nrows: usize, new_ncols: usize, val: N) -> DMatrix<N>
    where
        DefaultAllocator: Reallocator<N, R, C, Dynamic, Dynamic>,
    {
        self.resize_generic(Dynamic::new(new_nrows), Dynamic::new(new_ncols), val)
    }

    /// Resizes this matrix vertically, i.e., so that it contains `new_nrows` rows while keeping the same number of columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows than `self`, then the extra rows are filled with `val`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_vertically(self, new_nrows: usize, val: N) -> MatrixMN<N, Dynamic, C>
    where
        DefaultAllocator: Reallocator<N, R, C, Dynamic, C>,
    {
        let ncols = self.data.shape().1;
        self.resize_generic(Dynamic::new(new_nrows), ncols, val)
    }

    /// Resizes this matrix horizontally, i.e., so that it contains `new_ncolumns` columns while keeping the same number of columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// columns than `self`, then the extra columns are filled with `val`.
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_horizontally(self, new_ncols: usize, val: N) -> MatrixMN<N, R, Dynamic>
    where
        DefaultAllocator: Reallocator<N, R, C, R, Dynamic>,
    {
        let nrows = self.data.shape().0;
        self.resize_generic(nrows, Dynamic::new(new_ncols), val)
    }

    /// Resizes this matrix so that it contains `R2::value()` rows and `C2::value()` columns.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    pub fn fixed_resize<R2: DimName, C2: DimName>(self, val: N) -> MatrixMN<N, R2, C2>
    where
        DefaultAllocator: Reallocator<N, R, C, R2, C2>,
    {
        self.resize_generic(R2::name(), C2::name(), val)
    }

    /// Resizes `self` such that it has dimensions `new_nrows × now_ncols`.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    #[inline]
    pub fn resize_generic<R2: Dim, C2: Dim>(
        self,
        new_nrows: R2,
        new_ncols: C2,
        val: N,
    ) -> MatrixMN<N, R2, C2>
    where
        DefaultAllocator: Reallocator<N, R, C, R2, C2>,
    {
        let (nrows, ncols) = self.shape();
        let mut data = self.data.into_owned();

        if new_nrows.value() == nrows {
            let res = unsafe { DefaultAllocator::reallocate_copy(new_nrows, new_ncols, data) };
            let mut res = Matrix::from_data(res);
            if new_ncols.value() > ncols {
                res.columns_range_mut(ncols..).fill(val);
            }

            res
        } else {
            let mut res;

            unsafe {
                if new_nrows.value() < nrows {
                    compress_rows(
                        &mut data.as_mut_slice(),
                        nrows,
                        ncols,
                        new_nrows.value(),
                        nrows - new_nrows.value(),
                    );
                    res = Matrix::from_data(DefaultAllocator::reallocate_copy(
                        new_nrows, new_ncols, data,
                    ));
                } else {
                    res = Matrix::from_data(DefaultAllocator::reallocate_copy(
                        new_nrows, new_ncols, data,
                    ));
                    extend_rows(
                        &mut res.data.as_mut_slice(),
                        nrows,
                        new_ncols.value(),
                        nrows,
                        new_nrows.value() - nrows,
                    );
                }
            }

            if new_ncols.value() > ncols {
                res.columns_range_mut(ncols..).fill(val.inlined_clone());
            }

            if new_nrows.value() > nrows {
                res.slice_range_mut(nrows.., ..cmp::min(ncols, new_ncols.value()))
                    .fill(val);
            }

            res
        }
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar> DMatrix<N> {
    /// Resizes this matrix in-place.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows and/or columns than `self`, then the extra rows or columns are filled with `val`.
    ///
    /// Defined only for owned fully-dynamic matrices, i.e., `DMatrix`.
    pub fn resize_mut(&mut self, new_nrows: usize, new_ncols: usize, val: N)
    where
        DefaultAllocator: Reallocator<N, Dynamic, Dynamic, Dynamic, Dynamic>,
    {
        let placeholder = unsafe { Self::new_uninitialized(0, 0) };
        let old = mem::replace(self, placeholder);
        let new = old.resize(new_nrows, new_ncols, val);
        let _ = mem::replace(self, new);
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar, C: Dim> MatrixMN<N, Dynamic, C>
where
    DefaultAllocator: Allocator<N, Dynamic, C>,
{
    /// Changes the number of rows of this matrix in-place.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// rows than `self`, then the extra rows are filled with `val`.
    ///
    /// Defined only for owned matrices with a dynamic number of rows (for example, `DVector`).
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_vertically_mut(&mut self, new_nrows: usize, val: N)
    where
        DefaultAllocator: Reallocator<N, Dynamic, C, Dynamic, C>,
    {
        let placeholder =
            unsafe { Self::new_uninitialized_generic(Dynamic::new(0), self.data.shape().1) };
        let old = mem::replace(self, placeholder);
        let new = old.resize_vertically(new_nrows, val);
        let _ = mem::replace(self, new);
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<N: Scalar, R: Dim> MatrixMN<N, R, Dynamic>
where
    DefaultAllocator: Allocator<N, R, Dynamic>,
{
    /// Changes the number of column of this matrix in-place.
    ///
    /// The values are copied such that `self[(i, j)] == result[(i, j)]`. If the result has more
    /// columns than `self`, then the extra columns are filled with `val`.
    ///
    /// Defined only for owned matrices with a dynamic number of columns (for example, `DVector`).
    #[cfg(any(feature = "std", feature = "alloc"))]
    pub fn resize_horizontally_mut(&mut self, new_ncols: usize, val: N)
    where
        DefaultAllocator: Reallocator<N, R, Dynamic, R, Dynamic>,
    {
        let placeholder =
            unsafe { Self::new_uninitialized_generic(self.data.shape().0, Dynamic::new(0)) };
        let old = mem::replace(self, placeholder);
        let new = old.resize_horizontally(new_ncols, val);
        let _ = mem::replace(self, new);
    }
}

unsafe fn compress_rows<N: Scalar>(
    data: &mut [N],
    nrows: usize,
    ncols: usize,
    i: usize,
    nremove: usize,
) {
    let new_nrows = nrows - nremove;

    if new_nrows == 0 || ncols == 0 {
        return; // Nothing to do as the output matrix is empty.
    }

    let ptr_in = data.as_ptr();
    let ptr_out = data.as_mut_ptr();

    let mut curr_i = i;

    for k in 0..ncols - 1 {
        ptr::copy(
            ptr_in.offset((curr_i + (k + 1) * nremove) as isize),
            ptr_out.offset(curr_i as isize),
            new_nrows,
        );

        curr_i += new_nrows;
    }

    // Deal with the last column from which less values have to be copied.
    let remaining_len = nrows - i - nremove;
    ptr::copy(
        ptr_in.offset((nrows * ncols - remaining_len) as isize),
        ptr_out.offset(curr_i as isize),
        remaining_len,
    );
}

// Moves entries of a matrix buffer to make place for `ninsert` emty rows starting at the `i-th` row index.
// The `data` buffer is assumed to contained at least `(nrows + ninsert) * ncols` elements.
unsafe fn extend_rows<N: Scalar>(
    data: &mut [N],
    nrows: usize,
    ncols: usize,
    i: usize,
    ninsert: usize,
) {
    let new_nrows = nrows + ninsert;

    if new_nrows == 0 || ncols == 0 {
        return; // Nothing to do as the output matrix is empty.
    }

    let ptr_in = data.as_ptr();
    let ptr_out = data.as_mut_ptr();

    let remaining_len = nrows - i;
    let mut curr_i = new_nrows * ncols - remaining_len;

    // Deal with the last column from which less values have to be copied.
    ptr::copy(
        ptr_in.offset((nrows * ncols - remaining_len) as isize),
        ptr_out.offset(curr_i as isize),
        remaining_len,
    );

    for k in (0..ncols - 1).rev() {
        curr_i -= new_nrows;

        ptr::copy(
            ptr_in.offset((k * nrows + i) as isize),
            ptr_out.offset(curr_i as isize),
            nrows,
        );
    }
}

/// Extend the number of columns of the `Matrix` with elements from
/// a given iterator.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<N, R, S> Extend<N> for Matrix<N, R, Dynamic, S>
where
    N: Scalar,
    R: Dim,
    S: Extend<N>,
{
    /// Extend the number of columns of the `Matrix` with elements
    /// from the given iterator.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DMatrix, Dynamic, Matrix, MatrixMN, Matrix3};
    ///
    /// let data = vec![0, 1, 2,      // column 1
    ///                 3, 4, 5];     // column 2
    ///
    /// let mut matrix = DMatrix::from_vec(3, 2, data);
    ///
    /// matrix.extend(vec![6, 7, 8]); // column 3
    ///
    /// assert!(matrix.eq(&Matrix3::new(0, 3, 6,
    ///                                 1, 4, 7,
    ///                                 2, 5, 8)));
    /// ```
    ///
    /// # Panics
    /// This function panics if the number of elements yielded by the
    /// given iterator is not a multiple of the number of rows of the
    /// `Matrix`.
    ///
    /// ```should_panic
    /// # use nalgebra::{DMatrix, Dynamic, MatrixMN};
    /// let data = vec![0, 1, 2,  // column 1
    ///                 3, 4, 5]; // column 2
    ///
    /// let mut matrix = DMatrix::from_vec(3, 2, data);
    ///
    /// // The following panics because the vec length is not a multiple of 3.
    /// matrix.extend(vec![6, 7, 8, 9]);
    /// ```
    fn extend<I: IntoIterator<Item = N>>(&mut self, iter: I) {
        self.data.extend(iter);
    }
}

/// Extend the number of rows of the `Vector` with elements from
/// a given iterator.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<N, S> Extend<N> for Matrix<N, Dynamic, U1, S>
where
    N: Scalar,
    S: Extend<N>,
{
    /// Extend the number of rows of a `Vector` with elements
    /// from the given iterator.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::DVector;
    /// let mut vector = DVector::from_vec(vec![0, 1, 2]);
    /// vector.extend(vec![3, 4, 5]);
    /// assert!(vector.eq(&DVector::from_vec(vec![0, 1, 2, 3, 4, 5])));
    /// ```
    fn extend<I: IntoIterator<Item = N>>(&mut self, iter: I) {
        self.data.extend(iter);
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<N, R, S, RV, SV> Extend<Vector<N, RV, SV>> for Matrix<N, R, Dynamic, S>
where
    N: Scalar,
    R: Dim,
    S: Extend<Vector<N, RV, SV>>,
    RV: Dim,
    SV: Storage<N, RV>,
    ShapeConstraint: SameNumberOfRows<R, RV>,
{
    /// Extends the number of columns of a `Matrix` with `Vector`s
    /// from a given iterator.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{DMatrix, Vector3, Matrix3x4};
    ///
    /// let data = vec![0, 1, 2,          // column 1
    ///                 3, 4, 5];         // column 2
    ///
    /// let mut matrix = DMatrix::from_vec(3, 2, data);
    ///
    /// matrix.extend(
    ///   vec![Vector3::new(6,  7,  8),   // column 3
    ///        Vector3::new(9, 10, 11)]); // column 4
    ///
    /// assert!(matrix.eq(&Matrix3x4::new(0, 3, 6,  9,
    ///                                   1, 4, 7, 10,
    ///                                   2, 5, 8, 11)));
    /// ```
    ///
    /// # Panics
    /// This function panics if the dimension of each `Vector` yielded
    /// by the given iterator is not equal to the number of rows of
    /// this `Matrix`.
    ///
    /// ```should_panic
    /// # use nalgebra::{DMatrix, Vector2, Matrix3x4};
    /// let mut matrix =
    ///   DMatrix::from_vec(3, 2,
    ///                     vec![0, 1, 2,   // column 1
    ///                          3, 4, 5]); // column 2
    ///
    /// // The following panics because this matrix can only be extended with 3-dimensional vectors.
    /// matrix.extend(
    ///   vec![Vector2::new(6,  7)]); // too few dimensions!
    /// ```
    ///
    /// ```should_panic
    /// # use nalgebra::{DMatrix, Vector4, Matrix3x4};
    /// let mut matrix =
    ///   DMatrix::from_vec(3, 2,
    ///                     vec![0, 1, 2,   // column 1
    ///                          3, 4, 5]); // column 2
    ///
    /// // The following panics because this matrix can only be extended with 3-dimensional vectors.
    /// matrix.extend(
    ///   vec![Vector4::new(6, 7, 8, 9)]); // too few dimensions!
    /// ```
    fn extend<I: IntoIterator<Item = Vector<N, RV, SV>>>(&mut self, iter: I) {
        self.data.extend(iter);
    }
}