1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
use alloc::vec::Vec;
use std::mem;

use crate::endianity::Endianity;
use crate::write::{Error, Result, Writer};

/// A `Vec<u8>` with endianity metadata.
///
/// This implements the `Writer` trait, which is used for all writing of DWARF sections.
#[derive(Debug, Clone)]
pub struct EndianVec<Endian>
where
    Endian: Endianity,
{
    vec: Vec<u8>,
    endian: Endian,
}

impl<Endian> EndianVec<Endian>
where
    Endian: Endianity,
{
    /// Construct an empty `EndianVec` with the given endianity.
    pub fn new(endian: Endian) -> EndianVec<Endian> {
        EndianVec {
            vec: Vec::new(),
            endian,
        }
    }

    /// Return a reference to the raw slice.
    pub fn slice(&self) -> &[u8] {
        &self.vec
    }

    /// Convert into a `Vec<u8>`.
    pub fn into_vec(self) -> Vec<u8> {
        self.vec
    }

    /// Take any written data out of the `EndianVec`, leaving an empty `Vec` in its place.
    pub fn take(&mut self) -> Vec<u8> {
        let mut vec = Vec::new();
        mem::swap(&mut self.vec, &mut vec);
        vec
    }
}

impl<Endian> Writer for EndianVec<Endian>
where
    Endian: Endianity,
{
    type Endian = Endian;

    #[inline]
    fn endian(&self) -> Self::Endian {
        self.endian
    }

    #[inline]
    fn len(&self) -> usize {
        self.vec.len()
    }

    fn write(&mut self, bytes: &[u8]) -> Result<()> {
        self.vec.extend(bytes);
        Ok(())
    }

    fn write_at(&mut self, offset: usize, bytes: &[u8]) -> Result<()> {
        if offset > self.vec.len() {
            return Err(Error::OffsetOutOfBounds);
        }
        let to = &mut self.vec[offset..];
        if bytes.len() > to.len() {
            return Err(Error::LengthOutOfBounds);
        }
        let to = &mut to[..bytes.len()];
        to.copy_from_slice(bytes);
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::LittleEndian;

    #[test]
    fn test_endian_vec() {
        let mut w = EndianVec::new(LittleEndian);
        assert_eq!(w.endian(), LittleEndian);
        assert_eq!(w.len(), 0);

        w.write(&[1, 2]).unwrap();
        assert_eq!(w.slice(), &[1, 2]);
        assert_eq!(w.len(), 2);

        w.write(&[3, 4, 5]).unwrap();
        assert_eq!(w.slice(), &[1, 2, 3, 4, 5]);
        assert_eq!(w.len(), 5);

        w.write_at(0, &[6, 7]).unwrap();
        assert_eq!(w.slice(), &[6, 7, 3, 4, 5]);
        assert_eq!(w.len(), 5);

        w.write_at(3, &[8, 9]).unwrap();
        assert_eq!(w.slice(), &[6, 7, 3, 8, 9]);
        assert_eq!(w.len(), 5);

        assert_eq!(w.write_at(4, &[6, 7]), Err(Error::LengthOutOfBounds));
        assert_eq!(w.write_at(5, &[6, 7]), Err(Error::LengthOutOfBounds));
        assert_eq!(w.write_at(6, &[6, 7]), Err(Error::OffsetOutOfBounds));

        assert_eq!(w.into_vec(), vec![6, 7, 3, 8, 9]);
    }
}