use crate::ssa::{SSABuilder, SideEffects};
use crate::variable::Variable;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::{EntitySet, SecondaryMap};
use cranelift_codegen::ir;
use cranelift_codegen::ir::function::DisplayFunction;
use cranelift_codegen::ir::{
    types, AbiParam, Block, DataFlowGraph, ExtFuncData, ExternalName, FuncRef, Function,
    GlobalValue, GlobalValueData, Heap, HeapData, Inst, InstBuilder, InstBuilderBase,
    InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, SigRef, Signature, StackSlot,
    StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments, ValueLabelStart,
};
use cranelift_codegen::isa::{TargetFrontendConfig, TargetIsa};
use cranelift_codegen::packed_option::PackedOption;
pub struct FunctionBuilderContext {
    ssa: SSABuilder,
    blocks: SecondaryMap<Block, BlockData>,
    types: SecondaryMap<Variable, Type>,
}
pub struct FunctionBuilder<'a> {
    
    
    pub func: &'a mut Function,
    
    srcloc: ir::SourceLoc,
    func_ctx: &'a mut FunctionBuilderContext,
    position: PackedOption<Block>,
}
#[derive(Clone, Default)]
struct BlockData {
    
    
    pristine: bool,
    
    
    
    
    filled: bool,
    
    user_param_count: usize,
}
impl FunctionBuilderContext {
    
    
    pub fn new() -> Self {
        Self {
            ssa: SSABuilder::new(),
            blocks: SecondaryMap::new(),
            types: SecondaryMap::new(),
        }
    }
    fn clear(&mut self) {
        self.ssa.clear();
        self.blocks.clear();
        self.types.clear();
    }
    fn is_empty(&self) -> bool {
        self.ssa.is_empty() && self.blocks.is_empty() && self.types.is_empty()
    }
}
pub struct FuncInstBuilder<'short, 'long: 'short> {
    builder: &'short mut FunctionBuilder<'long>,
    block: Block,
}
impl<'short, 'long> FuncInstBuilder<'short, 'long> {
    fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self {
        Self { builder, block }
    }
}
impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> {
    fn data_flow_graph(&self) -> &DataFlowGraph {
        &self.builder.func.dfg
    }
    fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
        &mut self.builder.func.dfg
    }
    
    
    
    fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
        
        self.builder.ensure_inserted_block();
        let inst = self.builder.func.dfg.make_inst(data.clone());
        self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
        self.builder.func.layout.append_inst(inst, self.block);
        if !self.builder.srcloc.is_default() {
            self.builder.func.srclocs[inst] = self.builder.srcloc;
        }
        if data.opcode().is_branch() {
            match data.branch_destination() {
                Some(dest_block) => {
                    
                    
                    self.builder.declare_successor(dest_block, inst);
                }
                None => {
                    
                    
                    if let InstructionData::BranchTable {
                        table, destination, ..
                    } = data
                    {
                        
                        
                        
                        let mut unique = EntitySet::<Block>::new();
                        for dest_block in self
                            .builder
                            .func
                            .jump_tables
                            .get(table)
                            .expect("you are referencing an undeclared jump table")
                            .iter()
                            .filter(|&dest_block| unique.insert(*dest_block))
                        {
                            
                            
                            self.builder.func_ctx.ssa.declare_block_predecessor(
                                *dest_block,
                                self.builder.position.unwrap(),
                                inst,
                            );
                        }
                        self.builder.declare_successor(destination, inst);
                    }
                }
            }
        }
        if data.opcode().is_terminator() {
            self.builder.fill_current_block()
        }
        (inst, &mut self.builder.func.dfg)
    }
}
impl<'a> FunctionBuilder<'a> {
    
    
    pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self {
        debug_assert!(func_ctx.is_empty());
        Self {
            func,
            srcloc: Default::default(),
            func_ctx,
            position: Default::default(),
        }
    }
    
    pub fn current_block(&self) -> Option<Block> {
        self.position.expand()
    }
    
    pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) {
        self.srcloc = srcloc;
    }
    
    pub fn create_block(&mut self) -> Block {
        let block = self.func.dfg.make_block();
        self.func_ctx.ssa.declare_block(block);
        self.func_ctx.blocks[block] = BlockData {
            filled: false,
            pristine: true,
            user_param_count: 0,
        };
        block
    }
    
    pub fn insert_block_after(&mut self, block: Block, after: Block) {
        self.func.layout.insert_block_after(block, after);
    }
    
    
    
    
    
    
    
    pub fn switch_to_block(&mut self, block: Block) {
        
        debug_assert!(
            self.position.is_none()
                || self.is_unreachable()
                || self.is_pristine()
                || self.is_filled(),
            "you have to fill your block before switching"
        );
        
        debug_assert!(
            !self.func_ctx.blocks[block].filled,
            "you cannot switch to a block which is already filled"
        );
        
        self.position = PackedOption::from(block);
    }
    
    
    
    
    
    pub fn seal_block(&mut self, block: Block) {
        let side_effects = self.func_ctx.ssa.seal_block(block, self.func);
        self.handle_ssa_side_effects(side_effects);
    }
    
    
    
    
    
    
    pub fn seal_all_blocks(&mut self) {
        let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func);
        self.handle_ssa_side_effects(side_effects);
    }
    
    pub fn declare_var(&mut self, var: Variable, ty: Type) {
        debug_assert_eq!(
            self.func_ctx.types[var],
            types::INVALID,
            "variable {:?} is declared twice",
            var
        );
        self.func_ctx.types[var] = ty;
    }
    
    
    pub fn use_var(&mut self, var: Variable) -> Value {
        let (val, side_effects) = {
            let ty = *self.func_ctx.types.get(var).unwrap_or_else(|| {
                panic!(
                    "variable {:?} is used but its type has not been declared",
                    var
                )
            });
            debug_assert_ne!(
                ty,
                types::INVALID,
                "variable {:?} is used but its type has not been declared",
                var
            );
            self.func_ctx
                .ssa
                .use_var(self.func, var, ty, self.position.unwrap())
        };
        self.handle_ssa_side_effects(side_effects);
        val
    }
    
    
    pub fn def_var(&mut self, var: Variable, val: Value) {
        debug_assert_eq!(
            *self.func_ctx.types.get(var).unwrap_or_else(|| panic!(
                "variable {:?} is used but its type has not been declared",
                var
            )),
            self.func.dfg.value_type(val),
            "declared type of variable {:?} doesn't match type of value {}",
            var,
            val
        );
        self.func_ctx.ssa.def_var(var, val, self.position.unwrap());
    }
    
    
    
    pub fn set_val_label(&mut self, val: Value, label: ValueLabel) {
        if let Some(values_labels) = self.func.dfg.values_labels.as_mut() {
            use crate::hash_map::Entry;
            let start = ValueLabelStart {
                from: self.srcloc,
                label,
            };
            match values_labels.entry(val) {
                Entry::Occupied(mut e) => match e.get_mut() {
                    ValueLabelAssignments::Starts(starts) => starts.push(start),
                    _ => panic!("Unexpected ValueLabelAssignments at this stage"),
                },
                Entry::Vacant(e) => {
                    e.insert(ValueLabelAssignments::Starts(vec![start]));
                }
            }
        }
    }
    
    pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
        self.func.create_jump_table(data)
    }
    
    
    pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
        self.func.create_stack_slot(data)
    }
    
    pub fn import_signature(&mut self, signature: Signature) -> SigRef {
        self.func.import_signature(signature)
    }
    
    pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
        self.func.import_function(data)
    }
    
    pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue {
        self.func.create_global_value(data)
    }
    
    pub fn create_heap(&mut self, data: HeapData) -> Heap {
        self.func.create_heap(data)
    }
    
    
    pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> {
        let block = self
            .position
            .expect("Please call switch_to_block before inserting instructions");
        FuncInstBuilder::new(self, block)
    }
    
    pub fn ensure_inserted_block(&mut self) {
        let block = self.position.unwrap();
        if self.func_ctx.blocks[block].pristine {
            if !self.func.layout.is_block_inserted(block) {
                self.func.layout.append_block(block);
            }
            self.func_ctx.blocks[block].pristine = false;
        } else {
            debug_assert!(
                !self.func_ctx.blocks[block].filled,
                "you cannot add an instruction to a block already filled"
            );
        }
    }
    
    
    
    
    pub fn cursor(&mut self) -> FuncCursor {
        self.ensure_inserted_block();
        FuncCursor::new(self.func)
            .with_srcloc(self.srcloc)
            .at_bottom(self.position.unwrap())
    }
    
    
    
    pub fn append_block_params_for_function_params(&mut self, block: Block) {
        debug_assert!(
            !self.func_ctx.ssa.has_any_predecessors(block),
            "block parameters for function parameters should only be added to the entry block"
        );
        
        
        let user_param_count = &mut self.func_ctx.blocks[block].user_param_count;
        for argtyp in &self.func.signature.params {
            *user_param_count += 1;
            self.func.dfg.append_block_param(block, argtyp.value_type);
        }
    }
    
    
    
    pub fn append_block_params_for_function_returns(&mut self, block: Block) {
        
        
        let user_param_count = &mut self.func_ctx.blocks[block].user_param_count;
        for argtyp in &self.func.signature.returns {
            *user_param_count += 1;
            self.func.dfg.append_block_param(block, argtyp.value_type);
        }
    }
    
    
    
    pub fn finalize(&mut self) {
        
        #[cfg(debug_assertions)]
        {
            for (block, block_data) in self.func_ctx.blocks.iter() {
                assert!(
                    block_data.pristine || self.func_ctx.ssa.is_sealed(block),
                    "FunctionBuilder finalized, but block {} is not sealed",
                    block,
                );
                assert!(
                    block_data.pristine || block_data.filled,
                    "FunctionBuilder finalized, but block {} is not filled",
                    block,
                );
            }
        }
        
        #[cfg(debug_assertions)]
        {
            
            for block in self.func_ctx.blocks.keys() {
                if let Err((inst, _msg)) = self.func.is_block_basic(block) {
                    let inst_str = self.func.dfg.display_inst(inst, None);
                    panic!("{} failed basic block invariants on {}", block, inst_str);
                }
            }
        }
        
        
        self.func_ctx.clear();
        
        self.srcloc = Default::default();
        self.position = Default::default();
    }
}
impl<'a> FunctionBuilder<'a> {
    
    
    pub fn block_params(&self, block: Block) -> &[Value] {
        self.func.dfg.block_params(block)
    }
    
    pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
        self.func.dfg.signatures.get(sigref)
    }
    
    
    
    
    
    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
        debug_assert!(
            self.func_ctx.blocks[block].pristine,
            "You can't add block parameters after adding any instruction"
        );
        debug_assert_eq!(
            self.func_ctx.blocks[block].user_param_count,
            self.func.dfg.num_block_params(block)
        );
        self.func_ctx.blocks[block].user_param_count += 1;
        self.func.dfg.append_block_param(block, ty)
    }
    
    pub fn inst_results(&self, inst: Inst) -> &[Value] {
        self.func.dfg.inst_results(inst)
    }
    
    
    
    
    pub fn change_jump_destination(&mut self, inst: Inst, new_dest: Block) {
        let old_dest = self.func.dfg[inst]
            .branch_destination_mut()
            .expect("you want to change the jump destination of a non-jump instruction");
        let pred = self.func_ctx.ssa.remove_block_predecessor(*old_dest, inst);
        *old_dest = new_dest;
        self.func_ctx
            .ssa
            .declare_block_predecessor(new_dest, pred, inst);
    }
    
    
    
    pub fn is_unreachable(&self) -> bool {
        let is_entry = match self.func.layout.entry_block() {
            None => false,
            Some(entry) => self.position.unwrap() == entry,
        };
        !is_entry
            && self.func_ctx.ssa.is_sealed(self.position.unwrap())
            && !self
                .func_ctx
                .ssa
                .has_any_predecessors(self.position.unwrap())
    }
    
    
    pub fn is_pristine(&self) -> bool {
        self.func_ctx.blocks[self.position.unwrap()].pristine
    }
    
    
    pub fn is_filled(&self) -> bool {
        self.func_ctx.blocks[self.position.unwrap()].filled
    }
    
    
    
    
    #[cfg_attr(feature = "cargo-clippy", allow(clippy::needless_lifetimes))]
    pub fn display<'b, I: Into<Option<&'b dyn TargetIsa>>>(&'b self, isa: I) -> DisplayFunction {
        self.func.display(isa)
    }
}
impl<'a> FunctionBuilder<'a> {
    
    
    
    
    
    
    pub fn call_memcpy(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        src: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };
        let libc_memcpy = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memcpy),
            signature,
            colocated: false,
        });
        self.ins().call(libc_memcpy, &[dest, src, size]);
    }
    
    
    
    
    
    
    
    
    pub fn emit_small_memory_copy(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        src: Value,
        size: u64,
        dest_align: u8,
        src_align: u8,
        non_overlapping: bool,
    ) {
        
        const THRESHOLD: u64 = 4;
        if size == 0 {
            return;
        }
        let access_size = greatest_divisible_power_of_two(size);
        assert!(
            access_size.is_power_of_two(),
            "`size` is not a power of two"
        );
        assert!(
            access_size >= u64::from(::core::cmp::min(src_align, dest_align)),
            "`size` is smaller than `dest` and `src`'s alignment value."
        );
        let (access_size, int_type) = if access_size <= 8 {
            (access_size, Type::int((access_size * 8) as u16).unwrap())
        } else {
            (8, types::I64)
        };
        let load_and_store_amount = size / access_size;
        if load_and_store_amount > THRESHOLD {
            let size_value = self.ins().iconst(config.pointer_type(), size as i64);
            if non_overlapping {
                self.call_memcpy(config, dest, src, size_value);
            } else {
                self.call_memmove(config, dest, src, size_value);
            }
            return;
        }
        let mut flags = MemFlags::new();
        flags.set_aligned();
        
        
        let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount)
            .map(|i| {
                let offset = (access_size * i) as i32;
                (self.ins().load(int_type, flags, src, offset), offset)
            })
            .collect();
        for (value, offset) in registers {
            self.ins().store(flags, value, dest, offset);
        }
    }
    
    
    
    pub fn call_memset(
        &mut self,
        config: TargetFrontendConfig,
        buffer: Value,
        ch: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(types::I32));
            s.params.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };
        let libc_memset = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memset),
            signature,
            colocated: false,
        });
        let ch = self.ins().uextend(types::I32, ch);
        self.ins().call(libc_memset, &[buffer, ch, size]);
    }
    
    
    
    pub fn emit_small_memset(
        &mut self,
        config: TargetFrontendConfig,
        buffer: Value,
        ch: u8,
        size: u64,
        buffer_align: u8,
    ) {
        
        const THRESHOLD: u64 = 4;
        if size == 0 {
            return;
        }
        let access_size = greatest_divisible_power_of_two(size);
        assert!(
            access_size.is_power_of_two(),
            "`size` is not a power of two"
        );
        assert!(
            access_size >= u64::from(buffer_align),
            "`size` is smaller than `dest` and `src`'s alignment value."
        );
        let (access_size, int_type) = if access_size <= 8 {
            (access_size, Type::int((access_size * 8) as u16).unwrap())
        } else {
            (8, types::I64)
        };
        let load_and_store_amount = size / access_size;
        if load_and_store_amount > THRESHOLD {
            let ch = self.ins().iconst(types::I8, i64::from(ch));
            let size = self.ins().iconst(config.pointer_type(), size as i64);
            self.call_memset(config, buffer, ch, size);
        } else {
            let mut flags = MemFlags::new();
            flags.set_aligned();
            let ch = u64::from(ch);
            let raw_value = if int_type == types::I64 {
                (ch << 32) | (ch << 16) | (ch << 8) | ch
            } else if int_type == types::I32 {
                (ch << 16) | (ch << 8) | ch
            } else if int_type == types::I16 {
                (ch << 8) | ch
            } else {
                assert_eq!(int_type, types::I8);
                ch
            };
            let value = self.ins().iconst(int_type, raw_value as i64);
            for i in 0..load_and_store_amount {
                let offset = (access_size * i) as i32;
                self.ins().store(flags, value, buffer, offset);
            }
        }
    }
    
    
    
    
    pub fn call_memmove(
        &mut self,
        config: TargetFrontendConfig,
        dest: Value,
        source: Value,
        size: Value,
    ) {
        let pointer_type = config.pointer_type();
        let signature = {
            let mut s = Signature::new(config.default_call_conv);
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            s.params.push(AbiParam::new(pointer_type));
            self.import_signature(s)
        };
        let libc_memmove = self.import_function(ExtFuncData {
            name: ExternalName::LibCall(LibCall::Memmove),
            signature,
            colocated: false,
        });
        self.ins().call(libc_memmove, &[dest, source, size]);
    }
}
fn greatest_divisible_power_of_two(size: u64) -> u64 {
    (size as i64 & -(size as i64)) as u64
}
impl<'a> FunctionBuilder<'a> {
    
    fn fill_current_block(&mut self) {
        self.func_ctx.blocks[self.position.unwrap()].filled = true;
    }
    fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) {
        self.func_ctx
            .ssa
            .declare_block_predecessor(dest_block, self.position.unwrap(), jump_inst);
    }
    fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
        for split_block in side_effects.split_blocks_created {
            self.func_ctx.blocks[split_block].filled = true
        }
        for modified_block in side_effects.instructions_added_to_blocks {
            self.func_ctx.blocks[modified_block].pristine = false
        }
    }
}
#[cfg(test)]
mod tests {
    use super::greatest_divisible_power_of_two;
    use crate::frontend::{FunctionBuilder, FunctionBuilderContext};
    use crate::Variable;
    use alloc::string::ToString;
    use cranelift_codegen::entity::EntityRef;
    use cranelift_codegen::ir::types::*;
    use cranelift_codegen::ir::{AbiParam, ExternalName, Function, InstBuilder, Signature};
    use cranelift_codegen::isa::CallConv;
    use cranelift_codegen::settings;
    use cranelift_codegen::verifier::verify_function;
    fn sample_function(lazy_seal: bool) {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.returns.push(AbiParam::new(I32));
        sig.params.push(AbiParam::new(I32));
        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
            let block0 = builder.create_block();
            let block1 = builder.create_block();
            let block2 = builder.create_block();
            let block3 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, I32);
            builder.declare_var(y, I32);
            builder.declare_var(z, I32);
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);
            if !lazy_seal {
                builder.seal_block(block0);
            }
            {
                let tmp = builder.block_params(block0)[0]; 
                builder.def_var(x, tmp);
            }
            {
                let tmp = builder.ins().iconst(I32, 2);
                builder.def_var(y, tmp);
            }
            {
                let arg1 = builder.use_var(x);
                let arg2 = builder.use_var(y);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            builder.ins().jump(block1, &[]);
            builder.switch_to_block(block1);
            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(z);
                let tmp = builder.ins().iadd(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().brnz(arg, block3, &[]);
            }
            builder.ins().jump(block2, &[]);
            builder.switch_to_block(block2);
            if !lazy_seal {
                builder.seal_block(block2);
            }
            {
                let arg1 = builder.use_var(z);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(z, tmp);
            }
            {
                let arg = builder.use_var(y);
                builder.ins().return_(&[arg]);
            }
            builder.switch_to_block(block3);
            if !lazy_seal {
                builder.seal_block(block3);
            }
            {
                let arg1 = builder.use_var(y);
                let arg2 = builder.use_var(x);
                let tmp = builder.ins().isub(arg1, arg2);
                builder.def_var(y, tmp);
            }
            builder.ins().jump(block1, &[]);
            if !lazy_seal {
                builder.seal_block(block1);
            }
            if lazy_seal {
                builder.seal_all_blocks();
            }
            builder.finalize();
        }
        let flags = settings::Flags::new(settings::builder());
        
        if let Err(errors) = verify_function(&func, &flags) {
            panic!("{}\n{}", func.display(None), errors)
        }
    }
    #[test]
    fn sample() {
        sample_function(false)
    }
    #[test]
    fn sample_with_lazy_seal() {
        sample_function(true)
    }
    #[test]
    fn memcpy() {
        use core::str::FromStr;
        use cranelift_codegen::{isa, settings};
        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);
        let triple =
            ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple");
        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires riscv32 support.");
        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I32));
        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(1);
            let z = Variable::new(2);
            builder.declare_var(x, target.pointer_type());
            builder.declare_var(y, target.pointer_type());
            builder.declare_var(z, I32);
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);
            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = builder.use_var(y);
            builder.call_memcpy(target.frontend_config(), dest, src, size);
            builder.ins().return_(&[size]);
            builder.seal_all_blocks();
            builder.finalize();
        }
        assert_eq!(
            func.display(None).to_string(),
            "function %sample() -> i32 system_v {
    sig0 = (i32, i32, i32) system_v
    fn0 = %Memcpy sig0
block0:
    v3 = iconst.i32 0
    v1 -> v3
    v2 = iconst.i32 0
    v0 -> v2
    call fn0(v1, v0, v1)
    return v1
}
"
        );
    }
    #[test]
    fn small_memcpy() {
        use core::str::FromStr;
        use cranelift_codegen::{isa, settings};
        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);
        let triple =
            ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple");
        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires riscv32 support.");
        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I32));
        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(16);
            builder.declare_var(x, target.pointer_type());
            builder.declare_var(y, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);
            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = 8;
            builder.emit_small_memory_copy(target.frontend_config(), dest, src, size, 8, 8, true);
            builder.ins().return_(&[dest]);
            builder.seal_all_blocks();
            builder.finalize();
        }
        assert_eq!(
            func.display(None).to_string(),
            "function %sample() -> i32 system_v {
block0:
    v4 = iconst.i32 0
    v1 -> v4
    v3 = iconst.i32 0
    v0 -> v3
    v2 = load.i64 aligned v0
    store aligned v2, v1
    return v1
}
"
        );
    }
    #[test]
    fn not_so_small_memcpy() {
        use core::str::FromStr;
        use cranelift_codegen::{isa, settings};
        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);
        let triple =
            ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple");
        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires riscv32 support.");
        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I32));
        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
            let block0 = builder.create_block();
            let x = Variable::new(0);
            let y = Variable::new(16);
            builder.declare_var(x, target.pointer_type());
            builder.declare_var(y, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);
            let src = builder.use_var(x);
            let dest = builder.use_var(y);
            let size = 8192;
            builder.emit_small_memory_copy(target.frontend_config(), dest, src, size, 8, 8, true);
            builder.ins().return_(&[dest]);
            builder.seal_all_blocks();
            builder.finalize();
        }
        assert_eq!(
            func.display(None).to_string(),
            "function %sample() -> i32 system_v {
    sig0 = (i32, i32, i32) system_v
    fn0 = %Memcpy sig0
block0:
    v4 = iconst.i32 0
    v1 -> v4
    v3 = iconst.i32 0
    v0 -> v3
    v2 = iconst.i32 8192
    call fn0(v1, v0, v2)
    return v1
}
"
        );
    }
    #[test]
    fn small_memset() {
        use core::str::FromStr;
        use cranelift_codegen::{isa, settings};
        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);
        let triple =
            ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple");
        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires riscv32 support.");
        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I32));
        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
            let block0 = builder.create_block();
            let y = Variable::new(16);
            builder.declare_var(y, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);
            let dest = builder.use_var(y);
            let size = 8;
            builder.emit_small_memset(target.frontend_config(), dest, 1, size, 8);
            builder.ins().return_(&[dest]);
            builder.seal_all_blocks();
            builder.finalize();
        }
        assert_eq!(
            func.display(None).to_string(),
            "function %sample() -> i32 system_v {
block0:
    v2 = iconst.i32 0
    v0 -> v2
    v1 = iconst.i64 0x0001_0001_0101
    store aligned v1, v0
    return v0
}
"
        );
    }
    #[test]
    fn not_so_small_memset() {
        use core::str::FromStr;
        use cranelift_codegen::{isa, settings};
        let shared_builder = settings::builder();
        let shared_flags = settings::Flags::new(shared_builder);
        let triple =
            ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple");
        let target = isa::lookup(triple)
            .ok()
            .map(|b| b.finish(shared_flags))
            .expect("This test requires riscv32 support.");
        let mut sig = Signature::new(target.default_call_conv());
        sig.returns.push(AbiParam::new(I32));
        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
            let block0 = builder.create_block();
            let y = Variable::new(16);
            builder.declare_var(y, target.pointer_type());
            builder.append_block_params_for_function_params(block0);
            builder.switch_to_block(block0);
            let dest = builder.use_var(y);
            let size = 8192;
            builder.emit_small_memset(target.frontend_config(), dest, 1, size, 8);
            builder.ins().return_(&[dest]);
            builder.seal_all_blocks();
            builder.finalize();
        }
        assert_eq!(
            func.display(None).to_string(),
            "function %sample() -> i32 system_v {
    sig0 = (i32, i32, i32) system_v
    fn0 = %Memset sig0
block0:
    v4 = iconst.i32 0
    v0 -> v4
    v1 = iconst.i8 1
    v2 = iconst.i32 8192
    v3 = uextend.i32 v1
    call fn0(v0, v3, v2)
    return v0
}
"
        );
    }
    #[test]
    fn undef_vector_vars() {
        let mut sig = Signature::new(CallConv::SystemV);
        sig.returns.push(AbiParam::new(I8X16));
        sig.returns.push(AbiParam::new(B8X16));
        sig.returns.push(AbiParam::new(F32X4));
        let mut fn_ctx = FunctionBuilderContext::new();
        let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
        {
            let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx);
            let block0 = builder.create_block();
            let a = Variable::new(0);
            let b = Variable::new(1);
            let c = Variable::new(2);
            builder.declare_var(a, I8X16);
            builder.declare_var(b, B8X16);
            builder.declare_var(c, F32X4);
            builder.switch_to_block(block0);
            let a = builder.use_var(a);
            let b = builder.use_var(b);
            let c = builder.use_var(c);
            builder.ins().return_(&[a, b, c]);
            builder.seal_all_blocks();
            builder.finalize();
        }
        assert_eq!(
            func.display(None).to_string(),
            "function %sample() -> i8x16, b8x16, f32x4 system_v {
    const0 = 0x00000000000000000000000000000000
block0:
    v5 = f32const 0.0
    v6 = splat.f32x4 v5
    v2 -> v6
    v4 = vconst.b8x16 const0
    v1 -> v4
    v3 = vconst.i8x16 const0
    v0 -> v3
    return v0, v1, v2
}
"
        );
    }
    #[test]
    fn test_greatest_divisible_power_of_two() {
        assert_eq!(64, greatest_divisible_power_of_two(64));
        assert_eq!(16, greatest_divisible_power_of_two(48));
        assert_eq!(8, greatest_divisible_power_of_two(24));
        assert_eq!(1, greatest_divisible_power_of_two(25));
    }
}